Suppr超能文献

零相位或线性相位滤波器在多尺度熵设计中的优势:理论与应用

Benefits of Zero-Phase or Linear Phase Filters to Design Multiscale Entropy: Theory and Application.

作者信息

Grivel Eric, Berthelot Bastien, Colin Gaetan, Legrand Pierrick, Ibanez Vincent

机构信息

IMS Laboratory, Bordeaux INP, Bordeaux University, UMR CNRS 5218, 33400 Talence, France.

Thales AVS France, Campus Merignac, 75-77 Av. Marcel Dassault, 33700 Mérignac, France.

出版信息

Entropy (Basel). 2024 Apr 14;26(4):332. doi: 10.3390/e26040332.

Abstract

In various applications, multiscale entropy (MSE) is often used as a feature to characterize the complexity of the signals in order to classify them. It consists of estimating the sample entropies (SEs) of the signal under study and its coarse-grained (CG) versions, where the CG process amounts to (1) filtering the signal with an average filter whose order is the scale and (2) decimating the filter output by a factor equal to the scale. In this paper, we propose to derive a new variant of the MSE. Its novelty stands in the way to get the sequences at different scales by avoiding distortions during the decimation step. To this end, a linear-phase or null-phase low-pass filter whose cutoff frequency is well suited to the scale is used. Interpretations on how the MSE behaves and illustrations with a sum of sinusoids, as well as white and pink noises, are given. Then, an application to detect attentional tunneling is presented. It shows the benefit of the new approach in terms of value when one aims at differentiating the set of MSEs obtained in the attentional tunneling state from the set of MSEs obtained in the nominal state. It should be noted that CG versions can be replaced not only for the MSE but also for other variants.

摘要

在各种应用中,多尺度熵(MSE)常被用作一种特征来表征信号的复杂性,以便对其进行分类。它包括估计所研究信号及其粗粒化(CG)版本的样本熵(SE),其中粗粒化过程包括:(1)用阶数为尺度的平均滤波器对信号进行滤波;(2)将滤波器输出以等于尺度的因子进行抽取。在本文中,我们提议推导一种新的多尺度熵变体。其新颖之处在于通过避免抽取步骤中的失真来获取不同尺度下的序列。为此,使用了截止频率与尺度非常匹配的线性相位或零相位低通滤波器。文中给出了关于多尺度熵行为的解释以及用正弦波之和、白噪声和粉红噪声进行的说明。然后,展示了其在检测注意力隧道效应方面的应用。当旨在区分在注意力隧道效应状态下获得的多尺度熵集与在标称状态下获得的多尺度熵集时,该应用展示了新方法在值方面的优势。应当指出,粗粒化版本不仅可以用于多尺度熵,也可用于其他变体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d9f/11048990/0fd48e25d904/entropy-26-00332-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验