Suppr超能文献

美西螈视神经中钾离子清除的三域模型。

A tridomain model for potassium clearance in optic nerve of Necturus.

作者信息

Zhu Yi, Xu Shixin, Eisenberg Robert S, Huang Huaxiong

机构信息

Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada.

Zu Chongzhi Center for Mathematics and Computational Sciences, Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China.

出版信息

Biophys J. 2021 Aug 3;120(15):3008-3027. doi: 10.1016/j.bpj.2021.06.020. Epub 2021 Jun 30.

Abstract

Complex fluids flow in complex ways in complex structures. Transport of water and various organic and inorganic molecules in the central nervous system are important in a wide range of biological and medical processes. However, the exact driving mechanisms are often not known. In this work, we investigate flows induced by action potentials in an optic nerve as a prototype of the central nervous system. Different from traditional fluid dynamics problems, flows in biological tissues such as the central nervous system are coupled with ion transport. They are driven by osmosis created by concentration gradient of ionic solutions, which in turn influence the transport of ions. Our mathematical model is based on the known structural and biophysical properties of the experimental system used by the Harvard group Orkand et al. Asymptotic analysis and numerical computation show the significant role of water in convective ion transport. The full model (including water) and the electrodiffusion model (excluding water) are compared in detail to reveal an interesting interplay between water and ion transport. In the full model, convection due to water flow dominates inside the glial domain. This water flow in the glia contributes significantly to the spatial buffering of potassium in the extracellular space. Convection in the extracellular domain does not contribute significantly to spatial buffering. Electrodiffusion is the dominant mechanism for flows confined to the extracellular domain.

摘要

复杂流体在复杂结构中以复杂方式流动。在中枢神经系统中,水以及各种有机和无机分子的运输在广泛的生物学和医学过程中都很重要。然而,确切的驱动机制往往并不清楚。在这项工作中,我们研究了作为中枢神经系统原型的视神经中动作电位所引发的流动。与传统流体动力学问题不同,诸如中枢神经系统等生物组织中的流动与离子运输相互耦合。它们由离子溶液浓度梯度产生的渗透作用驱动,而这反过来又会影响离子的运输。我们的数学模型基于哈佛小组奥尔坎德等人所使用实验系统的已知结构和生物物理特性。渐近分析和数值计算表明水在对流离子运输中起着重要作用。详细比较了完整模型(包括水)和电扩散模型(不包括水),以揭示水与离子运输之间有趣的相互作用。在完整模型中,胶质区域内由于水流引起的对流占主导。胶质中的这种水流对细胞外空间中钾的空间缓冲有显著贡献。细胞外区域的对流对空间缓冲的贡献不大。电扩散是局限于细胞外区域流动的主导机制。

相似文献

1
A tridomain model for potassium clearance in optic nerve of Necturus.美西螈视神经中钾离子清除的三域模型。
Biophys J. 2021 Aug 3;120(15):3008-3027. doi: 10.1016/j.bpj.2021.06.020. Epub 2021 Jun 30.
5
Coupling and uncoupling of amphibian neuroglia.两栖动物神经胶质的偶联和解偶联
Neurosci Lett. 1985 Mar 15;54(2-3):237-42. doi: 10.1016/s0304-3940(85)80085-9.
6
Potassium currents in cultured glia of the frog optic nerve.青蛙视神经培养神经胶质细胞中的钾电流。
Glia. 1996 May;17(1):72-82. doi: 10.1002/(SICI)1098-1136(199605)17:1<72::AID-GLIA7>3.0.CO;2-9.
10
Brain extracellular space: developmental studies in rat optic nerve.
Ann N Y Acad Sci. 1986;481:87-105. doi: 10.1111/j.1749-6632.1986.tb27141.x.

本文引用的文献

2
The Brain's Glymphatic System: Current Controversies.大脑的胶状淋巴系统:当前的争议。
Trends Neurosci. 2020 Jul;43(7):458-466. doi: 10.1016/j.tins.2020.04.003. Epub 2020 May 15.
4
A Bidomain Model for Lens Microcirculation.晶状体微循环的双域模型。
Biophys J. 2019 Mar 19;116(6):1171-1184. doi: 10.1016/j.bpj.2019.02.007. Epub 2019 Feb 20.
7
General Anesthesia Inhibits the Activity of the "Glymphatic System".全身麻醉抑制“脑淋巴系统”的活性。
Theranostics. 2018 Jan 1;8(3):710-722. doi: 10.7150/thno.19154. eCollection 2018.
9
Brain Extracellular Space: The Final Frontier of Neuroscience.脑细胞外间隙:神经科学的终极前沿
Biophys J. 2017 Nov 21;113(10):2133-2142. doi: 10.1016/j.bpj.2017.06.052. Epub 2017 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验