Braun Daniel, Chang Remco, Gleicher Michael, von Landesberger Tatiana
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):787-797. doi: 10.1109/TVCG.2024.3456305. Epub 2024 Nov 25.
Visual validation of regression models in scatterplots is a common practice for assessing model quality, yet its efficacy remains unquantified. We conducted two empirical experiments to investigate individuals' ability to visually validate linear regression models (linear trends) and to examine the impact of common visualization designs on validation quality. The first experiment showed that the level of accuracy for visual estimation of slope (i.e., fitting a line to data) is higher than for visual validation of s lope (i.e., accepting a shown line). Notably, we found bias toward slopes that are "too steep" in both cases. This lead to novel insights that participants naturally assessed regression with orthogonal distances between the points and the line (i.e., ODR regression) rather than the common vertical distances (OLS regression). In the second experiment, we investigated whether incorporating common designs for regression visualization (error lines, bounding boxes, and confidence intervals) would improve visual validation. Even though error lines reduced validation bias, results failed to show the desired improvements in accuracy for any design. Overall, our findings suggest caution in using visual model validation for linear trends in scatterplots.
在散点图中对回归模型进行可视化验证是评估模型质量的常见做法,但其有效性仍未得到量化。我们进行了两项实证实验,以研究个体对线性回归模型(线性趋势)进行可视化验证的能力,并考察常见可视化设计对验证质量的影响。第一个实验表明,视觉估计斜率(即拟合一条线到数据)的准确性水平高于视觉验证斜率(即接受一条显示的线)。值得注意的是,我们在两种情况下都发现了对“太陡”斜率的偏差。这带来了新的见解,即参与者自然地用点与线之间的正交距离(即正交距离回归)而非常见的垂直距离(普通最小二乘法回归)来评估回归。在第二个实验中,我们研究了纳入回归可视化的常见设计(误差线、边界框和置信区间)是否会改善视觉验证。尽管误差线减少了验证偏差,但结果未能显示任何设计在准确性上有预期的提高。总体而言,我们的研究结果表明,在对散点图中的线性趋势使用视觉模型验证时应谨慎。