Experimental Physics and Center for Biophysics, Universitat des Saarlandes, 66123 Saarbruecken, Germany.
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany.
J Colloid Interface Sci. 2021 Dec;603:550-558. doi: 10.1016/j.jcis.2021.06.047. Epub 2021 Jun 9.
The impact of protein corona on the interactions of nanoparticles (NPs) with cells remains an open question. This question is particularly relevant to NPs which sizes, ranging from tens to hundreds nanometers, are comparable to the sizes of most abundant proteins in plasma. Protein sizes match with typical thickness of various coatings and ligands layers, usually present at the surfaces of larger NPs. Such size match may affect the properties and the designed function of NPs. We offer a direct demonstration of how protein corona can dramatically change the interaction mode between NPs and lipid bilayers. To this end, we choose the most extreme case of NP surface modification: nanostructures in the form of rigid spikes of 10-20 nm length at the surface of gold nanoparticles. In the absence of proteins we observe the formation of reversible pores when spiky NPs adsorb on lipid bilayers. In contrast, the presence of bovine serum albumin (BSA) proteins adsorbed at the surface of spiked NPs, effectively reduces the length of spikes exposed to the interaction with lipid bilayers. Thus, protein corona changes qualitatively the dynamics of pore formation, which is completely suppressed at high protein concentrations. These results suggest that protein corona can not only be critical for interaction of NPs with membranes, it may change their mode of interaction, thus offsetting the role of surface chemistry and ligands.
蛋白质冠对纳米颗粒(NPs)与细胞相互作用的影响仍然是一个悬而未决的问题。对于大小在几十到几百纳米之间的 NPs 来说,这个问题尤其重要,因为这些 NPs 的大小与血浆中大多数丰富蛋白质的大小相当。蛋白质的大小与各种涂层和配体层的典型厚度相匹配,这些涂层和配体层通常存在于较大的 NPs 表面。这种大小匹配可能会影响 NPs 的性质和设计功能。我们提供了一个直接的例子,说明蛋白质冠如何显著改变 NPs 和脂质双层之间的相互作用模式。为此,我们选择了 NP 表面修饰的最极端情况:金纳米颗粒表面的刚性刺状纳米结构,长度为 10-20nm。在没有蛋白质的情况下,当刺状 NPs 吸附在脂质双层上时,我们观察到可逆孔的形成。相比之下,当吸附在刺状 NPs 表面的牛血清白蛋白(BSA)蛋白质存在时,暴露于与脂质双层相互作用的刺的长度会有效降低。因此,蛋白质冠从根本上改变了孔形成的动力学,在高蛋白质浓度下完全抑制了孔的形成。这些结果表明,蛋白质冠不仅可以影响 NPs 与膜的相互作用,还可以改变它们的相互作用模式,从而抵消表面化学和配体的作用。