Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
Vision Res. 2021 Oct;187:55-65. doi: 10.1016/j.visres.2021.06.007. Epub 2021 Jun 30.
Visual texture, defined by local image statistics, provides important information to the human visual system for perceptual segmentation. Second-order or spectral statistics (equivalent to the Fourier power spectrum) are a well-studied segmentation cue. However, the role of higher-order statistics (HOS) in segmentation remains unclear, particularly for natural images. Recent experiments indicate that, in peripheral vision, the HOS of the widely adopted Portilla-Simoncelli texture model are a weak segmentation cue compared to spectral statistics, despite the fact that both are necessary to explain other perceptual phenomena and to support high-quality texture synthesis. Here we test whether this discrepancy reflects a property of natural image statistics. First, we observe that differences in spectral statistics across segments of natural images are redundant with differences in HOS. Second, using linear and nonlinear classifiers, we show that each set of statistics individually affords high performance in natural scenes and texture segmentation tasks, but combining spectral statistics and HOS produces relatively small improvements. Third, we find that HOS improve segmentation for a subset of images, although these images are difficult to identify. We also find that different subsets of HOS improve segmentation to a different extent, in agreement with previous physiological and perceptual work. These results show that the HOS add modestly to spectral statistics for natural image segmentation. We speculate that tuning to natural image statistics under resource constraints could explain the weak contribution of HOS to perceptual segmentation in human peripheral vision.
视觉纹理由局部图像统计信息定义,为人类视觉系统提供了用于感知分割的重要信息。二阶或频谱统计信息(相当于傅里叶功率谱)是一种经过充分研究的分割线索。然而,高阶统计信息(HOS)在分割中的作用尚不清楚,特别是对于自然图像。最近的实验表明,在外周视觉中,广泛采用的 Portilla-Simoncelli 纹理模型的 HOS 与频谱统计信息相比,是一个较弱的分割线索,尽管这两者都是解释其他感知现象和支持高质量纹理合成所必需的。在这里,我们测试这种差异是否反映了自然图像统计信息的特性。首先,我们观察到自然图像片段之间的频谱统计信息差异与 HOS 差异是冗余的。其次,使用线性和非线性分类器,我们表明每一组统计信息在自然场景和纹理分割任务中都能单独提供高性能,但结合频谱统计信息和 HOS 只能产生相对较小的改进。第三,我们发现 HOS 可以改善一部分图像的分割效果,尽管这些图像很难识别。我们还发现,不同的 HOS 子集对分割的改善程度不同,这与之前的生理和感知工作一致。这些结果表明,HOS 对自然图像分割的频谱统计信息有适度的补充。我们推测,在资源有限的情况下对自然图像统计信息进行调整,可以解释 HOS 在人类外周视觉中对感知分割的贡献较弱的原因。