Pappas Iosif, Avraamidou Styliani, Katz Justin, Burnak Baris, Beykal Burcu, Türkay Metin, Pistikopoulos Efstratios N
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, U.S.A.
Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, U.S.A.
Ind Eng Chem Res. 2021 Jun 16;60(23):8493-8503. doi: 10.1021/acs.iecr.1c01175. Epub 2021 Jun 4.
Industrial process systems need to be optimized, simultaneously satisfying financial, quality and safety criteria. To meet all those potentially conflicting optimization objectives, multiobjective optimization formulations can be used to derive optimal trade-off solutions. In this work, we present a framework that provides the exact Pareto front of multiobjective mixed-integer linear optimization problems through multiparametric programming. The original multiobjective optimization program is reformulated through the well-established -constraint scalarization method, in which the vector of scalarization parameters is treated as a right-hand side uncertainty for the multiparametric program. The algorithmic procedure then derives the optimal solution of the resulting multiparametric mixed-integer linear programming problem as an affine function of the parameters, which explicitly generates the Pareto front of the multiobjective problem. The solution of a numerical example is analytically presented to exhibit the steps of the approach, while its practicality is shown through a simultaneous process and product design problem case study. Finally, the computational performance is benchmarked with case studies of varying dimensionality with respect to the number of objective functions and decision variables.
工业过程系统需要进行优化,同时满足财务、质量和安全标准。为了满足所有这些潜在冲突的优化目标,可以使用多目标优化公式来得出最优权衡解决方案。在这项工作中,我们提出了一个框架,该框架通过多参数规划提供多目标混合整数线性优化问题的精确帕累托前沿。原始的多目标优化程序通过成熟的ε-约束标量化方法进行重新表述,其中标量化参数向量被视为多参数程序的右侧不确定性。然后,算法过程将所得多参数混合整数线性规划问题的最优解作为参数的仿射函数导出,这明确生成了多目标问题的帕累托前沿。通过解析给出一个数值示例的解,以展示该方法的步骤,同时通过一个同时进行过程和产品设计问题的案例研究来展示其实用性。最后,针对目标函数和决策变量的数量,用不同维度的案例研究对计算性能进行基准测试。