Suppr超能文献

利用深度学习对冠状动脉血管内光学相干断层扫描图像进行斑块自动特征分析。

Automated plaque characterization using deep learning on coronary intravascular optical coherence tomographic images.

作者信息

Lee Juhwan, Prabhu David, Kolluru Chaitanya, Gharaibeh Yazan, Zimin Vladislav N, Bezerra Hiram G, Wilson David L

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.

Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.

出版信息

Biomed Opt Express. 2019 Nov 25;10(12):6497-6515. doi: 10.1364/BOE.10.006497. eCollection 2019 Dec 1.

Abstract

Accurate identification of coronary plaque is very important for cardiologists when treating patients with advanced atherosclerosis. We developed fully-automated semantic segmentation of plaque in intravascular OCT images. We trained/tested a deep learning model on a folded, large, manually annotated clinical dataset. The sensitivities/specificities were 87.4%/89.5% and 85.1%/94.2% for pixel-wise classification of lipidous and calcified plaque, respectively. Automated clinical lesion metrics, potentially useful for treatment planning and research, compared favorably (<4%) with those derived from ground-truth labels. When we converted the results to A-line classification, they were significantly better (p < 0.05) than those obtained previously by using deep learning classifications of A-lines.

摘要

对于治疗晚期动脉粥样硬化患者的心脏病专家而言,准确识别冠状动脉斑块非常重要。我们开发了血管内光学相干断层扫描(OCT)图像中斑块的全自动语义分割技术。我们在一个经过折叠的、大型的、人工标注的临床数据集上训练/测试了一个深度学习模型。对于脂质斑块和钙化斑块的逐像素分类,敏感度/特异度分别为87.4%/89.5%和85.1%/94.2%。与基于真实标签得出的指标相比,对治疗规划和研究可能有用的自动临床病变指标表现良好(<4%)。当我们将结果转换为A线分类时,其显著优于(p < 0.05)先前通过A线深度学习分类获得的结果。

相似文献

1
Automated plaque characterization using deep learning on coronary intravascular optical coherence tomographic images.
Biomed Opt Express. 2019 Nov 25;10(12):6497-6515. doi: 10.1364/BOE.10.006497. eCollection 2019 Dec 1.
3
Automatic A-line coronary plaque classification using combined deep learning and textural features in intravascular OCT images.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11315. doi: 10.1117/12.2549066. Epub 2020 Mar 16.
4
Segmentation of Coronary Calcified Plaque in Intravascular OCT Images Using a Two-Step Deep Learning Approach.
IEEE Access. 2020;8:225581-225593. doi: 10.1109/access.2020.3045285. Epub 2020 Dec 16.
5
Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring.
J Med Imaging (Bellingham). 2019 Oct;6(4):045002. doi: 10.1117/1.JMI.6.4.045002. Epub 2019 Dec 27.
6
Automatic microchannel detection using deep learning in intravascular optical coherence tomography images.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12034. doi: 10.1117/12.2612697. Epub 2022 Apr 4.
7
Automatic assessment of calcified plaque and nodule by optical coherence tomography adopting deep learning model.
Int J Cardiovasc Imaging. 2022 Nov;38(11):2501-2510. doi: 10.1007/s10554-022-02637-5. Epub 2022 Jun 7.
10
Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images.
J Med Imaging (Bellingham). 2018 Oct;5(4):044504. doi: 10.1117/1.JMI.5.4.044504. Epub 2018 Dec 3.

引用本文的文献

2
Review and recommendations for using artificial intelligence in intracoronary optical coherence tomography analysis.
Eur Heart J Digit Health. 2025 May 15;6(4):529-539. doi: 10.1093/ehjdh/ztaf053. eCollection 2025 Jul.
3
A plaque recognition algorithm for coronary OCT images by Dense Atrous Convolution and attention mechanism.
PLoS One. 2025 Jun 10;20(6):e0325911. doi: 10.1371/journal.pone.0325911. eCollection 2025.
4
Comprehensive full-vessel segmentation and volumetric plaque quantification for intracoronary optical coherence tomography using deep learning.
Eur Heart J Digit Health. 2025 Mar 15;6(3):404-416. doi: 10.1093/ehjdh/ztaf021. eCollection 2025 May.
6
Histology-Grounded Automated Plaque Subtype Segmentation in Intravascular Optical Coherence Tomography.
J Soc Cardiovasc Angiogr Interv. 2025 Mar 18;4(3Part B):102524. doi: 10.1016/j.jscai.2024.102524. eCollection 2025 Mar.
7
Automated comprehensive evaluation of coronary artery plaque in IVOCT using deep learning.
iScience. 2025 Mar 6;28(4):112169. doi: 10.1016/j.isci.2025.112169. eCollection 2025 Apr 18.
9
Coronary artery calcification and cardiovascular outcome as assessed by intravascular OCT and artificial intelligence.
Biomed Opt Express. 2024 Jul 3;15(8):4438-4452. doi: 10.1364/BOE.524946. eCollection 2024 Aug 1.
10
AI in interventional cardiology: Innovations and challenges.
Heliyon. 2024 Aug 26;10(17):e36691. doi: 10.1016/j.heliyon.2024.e36691. eCollection 2024 Sep 15.

本文引用的文献

3
Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images.
J Med Imaging (Bellingham). 2018 Oct;5(4):044504. doi: 10.1117/1.JMI.5.4.044504. Epub 2018 Dec 3.
4
Characterization of coronary artery pathological formations from OCT imaging using deep learning.
Biomed Opt Express. 2018 Sep 21;9(10):4936-4960. doi: 10.1364/BOE.9.004936. eCollection 2018 Oct 1.
5
Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT.
IEEE Trans Med Imaging. 2018 Jun;37(6):1418-1429. doi: 10.1109/TMI.2018.2823768.
6
Classification of calcium in intravascular OCT images for the purpose of intervention planning.
Proc SPIE Int Soc Opt Eng. 2016 Mar;9786. doi: 10.1117/12.2216315.
8
Voxel-based plaque classification in coronary intravascular optical coherence tomography images using decision trees.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10575. doi: 10.1117/12.2293226. Epub 2018 Feb 27.
9
A new optical coherence tomography-based calcium scoring system to predict stent underexpansion.
EuroIntervention. 2018 Apr 6;13(18):e2182-e2189. doi: 10.4244/EIJ-D-17-00962.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验