Suppr超能文献

[高通量蛋白质组学分析的进展]

[Advances in high-throughput proteomic analysis].

作者信息

Wu Qiong, Sui Xintong, Tian Ruijun

机构信息

Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China.

出版信息

Se Pu. 2021 Feb;39(2):112-117. doi: 10.3724/SP.J.1123.2020.08023.

Abstract

Proteomic analysis aims at characterizing proteins on a large scale, including their relative abundance, post-translational modifications, protein-protein interactions and so on. Proteomic profiling helps to elucidate the mechanisms of disease occurrence and to discover new diagnostic markers and therapeutic targets. Mass spectrometry (MS)-based proteomic technologies have advanced to allow comprehensive qualitative and quantitative proteome profiling across a myriad proteins in cells and tissues. High-throughput proteomics is the core technique for large-scale protein characterization. With the increased demand for large cohort proteomic analysis in the biomedical research field, high-throughput proteomic analysis has become a critical issue that needs to be urgently addressed. The standard shotgun proteomic workflow comprises four steps, including sample preparation, peptide separation, MS acquisition, and data analysis. Advances in these four steps have contributed to the development of high-throughput proteomics. In this review, we aimed at summarizing the current information on the state-of-the-art development of high-throughput proteomic analysis, mainly including the following topics: (1) High-throughput, automatic proteomic sample preparation methods based on liquid-handling workstations. The automation of the proteomic sample preparation steps is essential for high-throughput proteomic analysis, which will significantly reduce variation of manual operation and sample loss by multistep sample processing. The commercial liquid handling workstations, including King Fisher Flex, Agilent Bravo, AssayMAP Bravo, and Biomek NX, perform the handling steps of 96- or 384-channel microplate formats using a mechanical arm that increases the throughput and robustness of sample preparation. (2) High-throughput proteomic detection methods based on microliter-flow-rate liquid chromatography coupled with mass spectrometry (micro-flow LC-MS/MS). Nanoliter-flow-rate liquid chromatography coupled with mass spectrometry (Nano-flow LC-MS/MS) is widely used in classic proteomic research due to its excellent sensitivity, which often comes at the expense of robustness. Owing to the improved robustness and decreased injection-to-injection overheads, micro-flow LC-MS/MS has become increasingly popular in high-throughput proteomic analysis. (3) Using MS instrumentation with high sensitivity and fast scanning speed to realize in-depth proteomic analysis coupled with short chromatographic gradient separation. In recent years, new MS instrumentation continues to exhibit speed of analysis and sensitivity enables the large-scale profiling of hundreds of samples. In particular, ion mobility-based MS, such as timsTOF Pro and Exploris 480 equipped with a front-end high field asymmetric waveform ion mobility spectrometry (FAIMS), which provides fast, sensitive, and robust proteome profiling, thus shifting proteomics to the high-throughput era. (4) Artificial intelligence-, deep neural network-, and machine learning-based proteome data analysis methods. These approaches have improved comprehensive proteomic analysis efficiency. Specifically, the emergence of new algorithms and the up gradation of search engines accelerate the process of high-throughput data analysis. Additionally, the challenges and future development of high-throughput proteomics are prospected. In conclusion, high-throughput proteomic technologies are expected to gradually "transform" and become powerful tools for large cohort proteomic analysis in the near future.

摘要

蛋白质组学分析旨在大规模表征蛋白质,包括其相对丰度、翻译后修饰、蛋白质-蛋白质相互作用等。蛋白质组学分析有助于阐明疾病发生的机制,并发现新的诊断标志物和治疗靶点。基于质谱(MS)的蛋白质组学技术已经取得进展,能够对细胞和组织中的大量蛋白质进行全面的定性和定量蛋白质组分析。高通量蛋白质组学是大规模蛋白质表征的核心技术。随着生物医学研究领域对大型队列蛋白质组分析需求的增加,高通量蛋白质组分析已成为一个亟待解决的关键问题。标准的鸟枪法蛋白质组学工作流程包括四个步骤,即样品制备、肽段分离、质谱采集和数据分析。这四个步骤的进展推动了高通量蛋白质组学的发展。在本综述中,我们旨在总结高通量蛋白质组分析的最新发展信息,主要包括以下主题:(1)基于液体处理工作站的高通量、自动化蛋白质组样品制备方法。蛋白质组样品制备步骤的自动化对于高通量蛋白质组分析至关重要,这将显著减少手动操作的差异以及多步样品处理导致的样品损失。商业液体处理工作站,包括King Fisher Flex、Agilent Bravo、AssayMAP Bravo和Biomek NX,使用机械臂执行96孔或384孔微孔板格式的处理步骤,提高了样品制备的通量和稳健性。(2)基于微升流速液相色谱与质谱联用(微流LC-MS/MS)的高通量蛋白质组检测方法。纳升流速液相色谱与质谱联用(纳流LC-MS/MS)因其出色的灵敏度而广泛应用于经典蛋白质组学研究,但其代价往往是稳健性不足。由于稳健性的提高和进样间开销的减少,微流LC-MS/MS在高通量蛋白质组分析中越来越受欢迎。(3)使用具有高灵敏度和快速扫描速度的质谱仪器实现深度蛋白质组分析并结合短色谱梯度分离。近年来,新型质谱仪器不断展现出分析速度和灵敏度,能够对数百个样品进行大规模分析。特别是基于离子淌度的质谱,如配备前端高场不对称波形离子淌度谱(FAIMS)的timsTOF Pro和Exploris 480,可提供快速、灵敏且稳健的蛋白质组分析,从而将蛋白质组学带入高通量时代。(4)基于人工智能、深度神经网络和机器学习的蛋白质组数据分析方法。这些方法提高了综合蛋白质组分析效率。具体而言,新算法的出现和搜索引擎的升级加速了高通量数据分析的过程。此外,还展望了高通量蛋白质组学面临的挑战和未来发展。总之,高通量蛋白质组学技术有望在不久的将来逐渐“转型”,成为大型队列蛋白质组分析的有力工具。

相似文献

1
[Advances in high-throughput proteomic analysis].[高通量蛋白质组学分析的进展]
Se Pu. 2021 Feb;39(2):112-117. doi: 10.3724/SP.J.1123.2020.08023.
2
On the potential of micro-flow LC-MS/MS in proteomics.微流 LC-MS/MS 在蛋白质组学中的应用潜力。
Expert Rev Proteomics. 2022 Mar;19(3):153-164. doi: 10.1080/14789450.2022.2134780. Epub 2022 Oct 18.

本文引用的文献

2
The proteome landscape of the kingdoms of life.生命王国的蛋白质组全景
Nature. 2020 Jun;582(7813):592-596. doi: 10.1038/s41586-020-2402-x. Epub 2020 Jun 17.
6
MaxQuant Software for Ion Mobility Enhanced Shotgun Proteomics.MaxQuant 软件在离子淌度增强型 shotgun 蛋白质组学中的应用。
Mol Cell Proteomics. 2020 Jun;19(6):1058-1069. doi: 10.1074/mcp.TIR119.001720. Epub 2020 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验