Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France.
Ecole Doctoral FIRE-Programme Bettencourt, CRI, Paris, France.
PLoS Biol. 2021 Jul 6;19(7):e3001276. doi: 10.1371/journal.pbio.3001276. eCollection 2021 Jul.
Mobile genetic elements (MGEs) drive genetic transfers between bacteria using mechanisms that require a physical interaction with the cellular envelope. In the high-priority multidrug-resistant nosocomial pathogens (ESKAPE), the first point of contact between the cell and virions or conjugative pili is the capsule. While the capsule can be a barrier to MGEs, it also evolves rapidly by horizontal gene transfer (HGT). Here, we aim at understanding this apparent contradiction by studying the covariation between the repertoire of capsule genes and MGEs in approximately 4,000 genomes of Klebsiella pneumoniae (Kpn). We show that capsules drive phage-mediated gene flow between closely related serotypes. Such serotype-specific phage predation also explains the frequent inactivation of capsule genes, observed in more than 3% of the genomes. Inactivation is strongly epistatic, recapitulating the capsule biosynthetic pathway. We show that conjugative plasmids are acquired at higher rates in natural isolates lacking a functional capsular locus and confirmed experimentally this result in capsule mutants. This suggests that capsule inactivation by phage pressure facilitates its subsequent reacquisition by conjugation. Accordingly, capsule reacquisition leaves long recombination tracts around the capsular locus. The loss and regain process rewires gene flow toward other lineages whenever it leads to serotype swaps. Such changes happen preferentially between chemically related serotypes, hinting that the fitness of serotype-swapped strains depends on the host genetic background. These results enlighten the bases of trade-offs between the evolution of virulence and multidrug resistance and caution that some alternatives to antibiotics by selecting for capsule inactivation may facilitate the acquisition of antibiotic resistance genes (ARGs).
移动遗传元件 (MGEs) 通过需要与细胞包膜物理相互作用的机制在细菌之间驱动基因转移。在高优先级的多药耐药医院病原体(ESKAPE)中,细胞与病毒或共轭菌毛的第一接触点是荚膜。虽然荚膜可以成为 MGEs 的障碍,但它也通过水平基因转移 (HGT) 迅速进化。在这里,我们旨在通过研究大约 4000 个肺炎克雷伯菌 (Kpn) 基因组中荚膜基因和 MGEs 的 repertoire 之间的共变来理解这一明显的矛盾。我们表明,荚膜驱动噬菌体介导的密切相关血清型之间的基因流动。这种血清型特异性噬菌体捕食也解释了超过 3%的基因组中观察到的荚膜基因经常失活。失活具有强烈的上位性,重现了荚膜生物合成途径。我们表明,在缺乏功能性荚膜基因座的天然分离株中,接合质粒的获得率更高,并在荚膜突变体中实验证实了这一结果。这表明噬菌体压力导致荚膜失活,从而促进了随后的接合再获得。因此,荚膜再获得在荚膜基因座周围留下了长的重组轨迹。只要导致血清型交换,丧失和恢复过程就会将基因流重新定向到其他谱系。这种变化优先发生在化学相关的血清型之间,这表明血清型交换菌株的适应性取决于宿主的遗传背景。这些结果阐明了毒力和多药耐药性进化之间权衡的基础,并警告说,通过选择荚膜失活来替代抗生素可能会促进抗生素耐药基因 (ARGs) 的获得。