Suppr超能文献

肺癌诊断中的肿瘤相关抗原自身抗体。

Autoantibodies to tumor-associated antigens in lung cancer diagnosis.

机构信息

Department of Pathology, Henan Medical College, Zhengzhou, Henan, China.

Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; School of Basic Medical Sciences & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.

出版信息

Adv Clin Chem. 2021;103:1-45. doi: 10.1016/bs.acc.2020.08.005. Epub 2020 Oct 13.

Abstract

Lung cancer (LC) accounts for the majority of cancer-related deaths worldwide. Although screening the high-risk population by low-dose CT (LDCT) has reduced mortality, the cost and high false positivity rate has prevented its general diagnostic use. As such, better and more specific minimally invasive biomarkers are needed in general and for early LC detection, specifically. Autoantibodies produced by humoral immune response to tumor-associated antigens (TAA) are emerging as a promising noninvasive biomarker for LC. Given the low sensitivity of any one single autoantibody, a panel approach could provide a more robust and promising strategy to detect early stage LC. In this review, we summarize the background of TAA autoantibodies (TAAb) and the techniques currently used for identifying TAA, as well as recent findings of LC specific antigens and TAAb. This review provides guidance toward the development of accurate and reliable TAAb as immunodiagnostic biomarkers in the early detection of LC.

摘要

肺癌(LC)是全球癌症相关死亡的主要原因。尽管通过低剂量 CT(LDCT)对高危人群进行筛查降低了死亡率,但成本高和高假阳性率阻碍了其广泛应用于诊断。因此,人们需要更好、更特异的微创生物标志物,不仅用于一般人群,也用于早期 LC 的检测。体液免疫对肿瘤相关抗原(TAA)产生的自身抗体作为一种很有前途的非侵入性 LC 生物标志物正在出现。鉴于任何单一自身抗体的敏感性都较低,因此采用面板方法可能提供一种更强大、更有前途的策略来检测早期 LC。本综述总结了 TAA 自身抗体(TAAb)的背景和目前用于识别 TAA 的技术,以及 LC 特异性抗原和 TAAb 的最新发现。本综述为开发准确可靠的 TAAb 作为 LC 早期检测的免疫诊断生物标志物提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验