Suppr超能文献

通过对 6218 种药物和基于细胞的检测进行虚拟筛选,为 COVID-19 重新利用药物。

Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay.

机构信息

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea.

出版信息

Proc Natl Acad Sci U S A. 2021 Jul 27;118(30). doi: 10.1073/pnas.2024302118.

Abstract

The COVID-19 pandemic caused by SARS-CoV-2 is an unprecedentedly significant health threat, prompting the need for rapidly developing antiviral drugs for the treatment. Drug repurposing is currently one of the most tangible options for rapidly developing drugs for emerging and reemerging viruses. In general, drug repurposing starts with virtual screening of approved drugs employing various computational methods. However, the actual hit rate of virtual screening is very low, and most of the predicted compounds are false positives. Here, we developed a strategy for virtual screening with much reduced false positives through incorporating predocking filtering based on shape similarity and postdocking filtering based on interaction similarity. We applied this advanced virtual screening approach to repurpose 6,218 approved and clinical trial drugs for COVID-19. All 6,218 compounds were screened against main protease and RNA-dependent RNA polymerase of SARS-CoV-2, resulting in 15 and 23 potential repurposed drugs, respectively. Among them, seven compounds can inhibit SARS-CoV-2 replication in Vero cells. Three of these drugs, emodin, omipalisib, and tipifarnib, show anti-SARS-CoV-2 activities in human lung cells, Calu-3. Notably, the activity of omipalisib is 200-fold higher than that of remdesivir in Calu-3. Furthermore, three drug combinations, omipalisib/remdesivir, tipifarnib/omipalisib, and tipifarnib/remdesivir, show strong synergistic effects in inhibiting SARS-CoV-2. Such drug combination therapy improves antiviral efficacy in SARS-CoV-2 infection and reduces the risk of each drug's toxicity. The drug repurposing strategy reported here will be useful for rapidly developing drugs for treating COVID-19 and other viruses.

摘要

由 SARS-CoV-2 引起的 COVID-19 大流行是一场前所未有的重大健康威胁,促使人们需要迅速开发用于治疗的抗病毒药物。药物再利用是目前为新兴和重现病毒快速开发药物的最切实可行的选择之一。一般来说,药物再利用始于使用各种计算方法对已批准药物进行虚拟筛选。然而,虚拟筛选的实际命中率非常低,并且大多数预测的化合物都是假阳性。在这里,我们通过结合基于形状相似性的预对接过滤和基于相互作用相似性的后对接过滤,开发了一种可大大降低假阳性率的虚拟筛选策略。我们将这种先进的虚拟筛选方法应用于重新利用 6218 种已批准和临床试验药物治疗 COVID-19。将所有 6218 种化合物对 SARS-CoV-2 的主要蛋白酶和 RNA 依赖性 RNA 聚合酶进行了筛选,分别得到 15 种和 23 种可能的再利用药物。其中,有 7 种化合物可以抑制 SARS-CoV-2 在 Vero 细胞中的复制。这 3 种药物,大黄素、奥法利昔布和替匹法尼,在人肺细胞 Calu-3 中显示出抗 SARS-CoV-2 的活性。值得注意的是,奥法利昔布在 Calu-3 中的活性比瑞德西韦高 200 倍。此外,奥法利昔布/瑞德西韦、替匹法尼/奥法利昔布和替匹法尼/瑞德西韦这三种药物组合在抑制 SARS-CoV-2 方面显示出很强的协同作用。这种药物联合治疗提高了 SARS-CoV-2 感染的抗病毒疗效,降低了每种药物毒性的风险。这里报道的药物再利用策略将有助于快速开发治疗 COVID-19 和其他病毒的药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42c0/8325362/fdd252daba60/pnas.2024302118fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验