Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Chem Phys. 2021 Jul 7;155(1):010901. doi: 10.1063/5.0044150.
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 10 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
三维(3D)组织的人类基因组在所有的 DNA 模板过程中起着至关重要的作用,包括基因转录、基因调控和 DNA 复制。计算建模可以是一种有效的方法来构建高分辨率的基因组结构,并提高我们对这些分子过程的理解。然而,由于人类基因组由超过 6×10 个碱基对组成,系统大小超过了传统建模方法的能力,因此它面临着重大的挑战。在这篇观点文章中,我们回顾了在建模人类基因组方面所取得的进展。通过最大熵优化算法参数化的粗粒模型来再现实验数据,可以有效地研究各种长度尺度的基因组组织。它们提供了对全基因组组织原则的深入了解,并能够从表观遗传修饰中对染色体结构进行从头预测。这些模型在近原子分辨率下的应用进一步揭示了驱动无序蛋白质相分离的物理化学相互作用,并决定了染色质在原位的稳定性。我们以研究染色体动力学的机遇和挑战为结尾。