Suppr超能文献

p53 依赖性翻译程序指导核糖体病模型中的组织选择性表型。

A p53-dependent translational program directs tissue-selective phenotypes in a model of ribosomopathies.

机构信息

Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University, Stanford, CA 94305, USA.

Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.

出版信息

Dev Cell. 2021 Jul 26;56(14):2089-2102.e11. doi: 10.1016/j.devcel.2021.06.013. Epub 2021 Jul 8.

Abstract

In ribosomopathies, perturbed expression of ribosome components leads to tissue-specific phenotypes. What accounts for such tissue-selective manifestations as a result of mutations in the ribosome, a ubiquitous cellular machine, has remained a mystery. Combining mouse genetics and in vivo ribosome profiling, we observe limb-patterning phenotypes in ribosomal protein (RP) haploinsufficient embryos, and we uncover selective translational changes of transcripts that controlling limb development. Surprisingly, both loss of p53, which is activated by RP haploinsufficiency, and augmented protein synthesis rescue these phenotypes. These findings are explained by the finding that p53 functions as a master regulator of protein synthesis, at least in part, through transcriptional activation of 4E-BP1. 4E-BP1, a key translational regulator, in turn, facilitates selective changes in the translatome downstream of p53, and this thereby explains how RP haploinsufficiency may elicit specificity to gene expression. These results provide an integrative model to help understand how in vivo tissue-specific phenotypes emerge in ribosomopathies.

摘要

在核糖体病中,核糖体成分表达失调导致组织特异性表型。核糖体是一种普遍存在的细胞机器,由于其突变导致的组织选择性表现仍然是一个谜。通过结合小鼠遗传学和体内核糖体分析,我们观察到核糖体蛋白(RP)单倍不足胚胎的肢体模式表型,并发现控制肢体发育的转录本存在选择性翻译变化。令人惊讶的是,p53 的缺失(p53 由 RP 单倍不足激活)和蛋白质合成的增加都可以挽救这些表型。这一发现可以通过以下发现来解释:p53 作为蛋白质合成的主要调节剂,至少部分通过 4E-BP1 的转录激活来发挥作用。4E-BP1 是一种关键的翻译调节剂,反过来又促进了 p53 下游翻译组的选择性变化,这就解释了 RP 单倍不足如何引发基因表达的特异性。这些结果提供了一个综合模型,有助于理解核糖体病中体内组织特异性表型是如何出现的。

相似文献

2
Ribosomopathies: There's strength in numbers.核糖体病:众志成城。
Science. 2017 Nov 3;358(6363). doi: 10.1126/science.aan2755.
3
Translation defects in ribosomopathies.核糖体病中的翻译缺陷。
Curr Opin Hematol. 2022 May 1;29(3):119-125. doi: 10.1097/MOH.0000000000000705. Epub 2022 Jan 31.
7
Nucleolar stress in Diamond Blackfan anemia pathophysiology.核仁应激在先天性纯红细胞再生障碍性贫血病理生理学中的作用
Biochim Biophys Acta. 2014 Jun;1842(6):765-8. doi: 10.1016/j.bbadis.2013.12.013. Epub 2014 Jan 8.

引用本文的文献

本文引用的文献

5
Translation Control by .由……进行的翻译控制
Cancers (Basel). 2018 May 5;10(5):133. doi: 10.3390/cancers10050133.
9
mTOR Signaling in Growth, Metabolism, and Disease.生长、代谢及疾病中的mTOR信号传导
Cell. 2017 Mar 9;168(6):960-976. doi: 10.1016/j.cell.2017.02.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验