Suppr超能文献

核糖体图谱法进行的转录组范围的翻译测量。

Transcriptome-wide measurement of translation by ribosome profiling.

机构信息

Department of Molecular and Cell Biology, Center for RNA Systems Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, 16 Barker Hall # 3202, Berkeley, CA 94720-3202, USA.

出版信息

Methods. 2017 Aug 15;126:112-129. doi: 10.1016/j.ymeth.2017.05.028. Epub 2017 Jun 1.

Abstract

Translation is one of the fundamental processes of life. It comprises the assembly of polypeptides whose amino acid sequence corresponds to the codon sequence of an mRNA's ORF. Translation is performed by the ribosome; therefore, in order to understand translation and its regulation we must be able to determine the numbers and locations of ribosomes on mRNAs in vivo. Furthermore, we must be able to examine their redistribution in different physiological contexts and in response to experimental manipulations. The ribosome profiling method provides us with an opportunity to learn these locations, by sequencing a cDNA library derived from the short fragments of mRNA covered by the ribosome. Since its original description, the ribosome profiling method has undergone continuing development; in this article we describe the method's current state. Important improvements include: the incorporation of sample barcodes to enable library multiplexing, the incorporation of unique molecular identifiers to enable to removal of duplicated sequences, and the replacement of a gel-purification step with the enzymatic degradation of unligated linker.

摘要

翻译是生命的基本过程之一。它包括将与 mRNA 的 ORF 的密码子序列相对应的多肽组装起来。翻译是由核糖体进行的;因此,为了理解翻译及其调控,我们必须能够确定核糖体在体内 mRNA 上的数量和位置。此外,我们必须能够检查它们在不同生理环境中的重新分布以及对实验操作的反应。核糖体分析方法通过对核糖体覆盖的短片段 mRNA 的 cDNA 文库进行测序,为我们提供了了解这些位置的机会。自最初描述以来,核糖体分析方法一直在不断发展;在本文中,我们描述了该方法的现状。重要的改进包括:加入样品条形码以实现文库的多重化,加入独特的分子标识符以去除重复序列,以及用酶促降解未连接的接头取代凝胶纯化步骤。

相似文献

1
Transcriptome-wide measurement of translation by ribosome profiling.
Methods. 2017 Aug 15;126:112-129. doi: 10.1016/j.ymeth.2017.05.028. Epub 2017 Jun 1.
2
Dual randomization of oligonucleotides to reduce the bias in ribosome-profiling libraries.
Methods. 2016 Sep 1;107:89-97. doi: 10.1016/j.ymeth.2016.07.011. Epub 2016 Jul 19.
3
4
Simple and inexpensive ribosome profiling analysis of mRNA translation.
Methods. 2015 Dec;91:69-74. doi: 10.1016/j.ymeth.2015.07.003. Epub 2015 Jul 8.
6
High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress.
Mol Cell. 2019 Mar 7;73(5):959-970.e5. doi: 10.1016/j.molcel.2018.12.009. Epub 2019 Jan 24.
7
High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.
PLoS Pathog. 2016 Feb 26;12(2):e1005473. doi: 10.1371/journal.ppat.1005473. eCollection 2016 Feb.
8
Genome-wide annotation and quantitation of translation by ribosome profiling.
Curr Protoc Mol Biol. 2013 Jul;Chapter 4:4.18.1-4.18.19. doi: 10.1002/0471142727.mb0418s103.
9
Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling.
Methods Mol Biol. 2016;1358:71-97. doi: 10.1007/978-1-4939-3067-8_5.
10
Ribosome Profiling of Vaccinia Virus-Infected Cells.
Methods Mol Biol. 2019;2023:171-188. doi: 10.1007/978-1-4939-9593-6_11.

引用本文的文献

2
A Ψ-Ψ codon-anticodon pairing in nonsense suppression and translational recoding.
Nat Chem Biol. 2025 Sep 12. doi: 10.1038/s41589-025-02025-9.
3
Sequence-specific trapping of EF-Tu/glycyl-tRNA complex on the ribosome by bottromycin.
bioRxiv. 2025 Aug 20:2025.08.17.670399. doi: 10.1101/2025.08.17.670399.
4
Protocol for Disome-seq to identify transcriptome-wide ribosome collisions in yeast cells.
STAR Protoc. 2025 Aug 26;6(3):104047. doi: 10.1016/j.xpro.2025.104047.
6
RNA triggers chronic stress during neuronal aging.
bioRxiv. 2025 Aug 5:2025.08.04.668575. doi: 10.1101/2025.08.04.668575.
7
Principles of cotranslational mitochondrial protein import.
Cell. 2025 Aug 7. doi: 10.1016/j.cell.2025.07.021.
8
Common cell lysis procedures distort ribosome profiling analyses of gene expression.
Genome Biol. 2025 Aug 11;26(1):241. doi: 10.1186/s13059-025-03651-1.
9
NAC controls nascent chain fate through tunnel sensing and chaperone action.
bioRxiv. 2025 Jul 31:2025.07.27.667080. doi: 10.1101/2025.07.27.667080.

本文引用的文献

2
Post-Translational Dosage Compensation Buffers Genetic Perturbations to Stoichiometry of Protein Complexes.
PLoS Genet. 2017 Jan 25;13(1):e1006554. doi: 10.1371/journal.pgen.1006554. eCollection 2017 Jan.
3
Insights into the mechanisms of eukaryotic translation gained with ribosome profiling.
Nucleic Acids Res. 2017 Jan 25;45(2):513-526. doi: 10.1093/nar/gkw1190. Epub 2016 Dec 6.
4
Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.
BMC Genomics. 2016 Nov 22;17(1):958. doi: 10.1186/s12864-016-3278-x.
5
Single-cell sequencing of the small-RNA transcriptome.
Nat Biotechnol. 2016 Dec;34(12):1264-1266. doi: 10.1038/nbt.3701. Epub 2016 Oct 31.
6
Super-resolution ribosome profiling reveals unannotated translation events in .
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):E7126-E7135. doi: 10.1073/pnas.1614788113. Epub 2016 Oct 21.
8
Ribonuclease selection for ribosome profiling.
Nucleic Acids Res. 2017 Jan 25;45(2):e6. doi: 10.1093/nar/gkw822. Epub 2016 Sep 15.
9
RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints.
Bioinformatics. 2017 Jan 1;33(1):139-141. doi: 10.1093/bioinformatics/btw585. Epub 2016 Sep 14.
10
Dual randomization of oligonucleotides to reduce the bias in ribosome-profiling libraries.
Methods. 2016 Sep 1;107:89-97. doi: 10.1016/j.ymeth.2016.07.011. Epub 2016 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验