Suppr超能文献

非语言统计学习的动态性:从神经同步到显性知识的出现。

Dynamics of nonlinguistic statistical learning: From neural entrainment to the emergence of explicit knowledge.

机构信息

IDM/fMEG Center of the Helmholtz Center Munich at the University of Tübingen, University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany.

Western University, Department of Psychology, Brain and Mind Institute, London, ON, Canada.

出版信息

Neuroimage. 2021 Oct 15;240:118378. doi: 10.1016/j.neuroimage.2021.118378. Epub 2021 Jul 8.

Abstract

Humans are highly attuned to patterns in the environment. This ability to detect environmental patterns, referred to as statistical learning, plays a key role in many diverse aspects of cognition. However, the spatiotemporal neural mechanisms underlying implicit statistical learning, and how these mechanisms may relate or give rise to explicit learning, remain poorly understood. In the present study, we investigated these different aspects of statistical learning by using an auditory nonlinguistic statistical learning paradigm combined with magnetoencephalography. Twenty-four healthy volunteers were exposed to structured and random tone sequences, and statistical learning was quantified by neural entrainment. Already early during exposure, participants showed strong entrainment to the embedded tone patterns. A significant increase in entrainment over exposure was detected only in the structured condition, reflecting the trajectory of learning. While source reconstruction revealed a wide range of brain areas involved in this process, entrainment in areas around the left pre-central gyrus as well as right temporo-frontal areas significantly predicted behavioral performance. Sensor level results confirmed this relationship between neural entrainment and subsequent explicit knowledge. These results give insights into the dynamic relation between neural entrainment and explicit learning of triplet structures, suggesting that these two aspects are systematically related yet dissociable. Neural entrainment reflects robust, implicit learning of underlying patterns, whereas the emergence of explicit knowledge, likely built on the implicit encoding of structure, varies across individuals and may depend on factors such as sufficient exposure time and attention.

摘要

人类对环境中的模式高度敏感。这种检测环境模式的能力,称为统计学习,在认知的许多不同方面都起着关键作用。然而,潜在统计学习的时空神经机制,以及这些机制如何相互关联或产生显式学习,仍然知之甚少。在本研究中,我们通过使用结合了脑磁图的听觉非语言统计学习范式来研究这些不同方面的统计学习。24 名健康志愿者接受了结构化和随机音调序列的暴露,并且通过神经同步来量化统计学习。在暴露期间,参与者已经表现出对嵌入式音调模式的强烈同步。仅在结构化条件下检测到同步随暴露的显著增加,反映了学习的轨迹。虽然源重建揭示了参与该过程的广泛的大脑区域,但左中央前回周围和右颞额区域的同步对行为表现有显著预测作用。传感器水平的结果证实了神经同步与后续显式知识之间的这种关系。这些结果深入了解了神经同步与三胞胎结构的显式学习之间的动态关系,表明这两个方面是系统相关但可分离的。神经同步反映了对潜在模式的强大、隐式学习,而显式知识的出现,可能建立在结构的隐式编码上,因人而异,可能取决于足够的暴露时间和注意力等因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db0d/8456692/3da703959de3/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验