Department of General and Visceral Surgery, Asklepios Hospital Altona, Hamburg, Germany.
Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland.
J Clin Monit Comput. 2022 Aug;36(4):1109-1119. doi: 10.1007/s10877-021-00743-8. Epub 2021 Jul 10.
Numerous patient-related clinical parameters and treatment-specific variables have been identified as causing or contributing to the severity of peritonitis. We postulated that a combination of clinical and surgical markers and scoring systems would outperform each of these predictors in isolation. To investigate this hypothesis, we developed a multivariable model to examine whether survival outcome can reliably be predicted in peritonitis patients treated with open abdomen. This single-center retrospective analysis used univariable and multivariable logistic regression modeling in combination with repeated random sub-sampling validation to examine the predictive capabilities of domain-specific predictors (i.e., demography, physiology, surgery). We analyzed data of 1,351 consecutive adult patients (55.7% male) who underwent open abdominal surgery in the study period (January 1998 to December 2018). Core variables included demographics, clinical scores, surgical indices and indicators of organ dysfunction, peritonitis index, incision type, fascia closure, wound healing, and fascial dehiscence. Postoperative complications were also added when available. A multidomain peritonitis prediction model (MPPM) was constructed to bridge the mortality predictions from individual domains (demographic, physiological and surgical). The MPPM is based on data of n = 597 patients, features high predictive capabilities (area under the receiver operating curve: 0.87 (0.85 to 0.90, 95% CI)) and is well calibrated. The surgical predictor "skin closure" was found to be the most important predictor of survival in our cohort, closely followed by the two physiological predictors SAPS-II and MPI. Marginal effects plots highlight the effect of individual outcomes on the prediction of survival outcome in patients undergoing staged laparotomies for treatment of peritonitis. Although most single indices exhibited moderate performance, we observed that the predictive performance was markedly increased when an integrative prediction model was applied. Our proposed MPPM integrative prediction model may outperform the predictive power of current models.
许多与患者相关的临床参数和治疗特异性变量已被确定为导致或促成腹膜炎严重程度的原因。我们推测,将临床和手术标志物和评分系统结合起来,其表现将优于这些预测因子中的每一个。为了验证这一假设,我们开发了一个多变量模型,以检查在接受开放式腹部手术治疗的腹膜炎患者中,生存结果是否可以可靠地预测。这项单中心回顾性分析使用单变量和多变量逻辑回归模型,并结合重复随机子抽样验证,检查特定领域预测因子(即人口统计学、生理学、手术)的预测能力。我们分析了在研究期间(1998 年 1 月至 2018 年 12 月)接受开放式腹部手术的 1351 例连续成年患者(55.7%为男性)的数据。核心变量包括人口统计学、临床评分、手术指标和器官功能障碍指标、腹膜炎指数、切口类型、筋膜闭合、伤口愈合和筋膜裂开。当有术后并发症时也将其加入。构建了一个多域腹膜炎预测模型(MPPM),以弥合来自个体领域(人口统计学、生理学和手术)的死亡率预测。MPPM 基于 n=597 例患者的数据,具有较高的预测能力(接收者操作特征曲线下面积:0.87(0.85 至 0.90,95%置信区间))和良好的校准。我们发现,“皮肤闭合”是该队列中生存的最重要预测因子,紧随其后的是两个生理预测因子 SAPS-II 和 MPI。边缘效应图突出了个体结果对接受分期剖腹手术治疗腹膜炎患者的生存结果预测的影响。虽然大多数单项指标表现出中等性能,但我们观察到,当应用综合预测模型时,预测性能显著提高。我们提出的 MPPM 综合预测模型可能优于当前模型的预测能力。