Cao Jing, Gong Jiao, Li Xinhua, Hu Zhaoxia, Xu Yingjun, Shi Hong, Li Danyang, Liu Guangjian, Jie Yusheng, Hu Bo, Chong Yutian
Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Front Pharmacol. 2021 Jun 24;12:692454. doi: 10.3389/fphar.2021.692454. eCollection 2021.
The pathogenesis of heterogeneity in gastric cancer (GC) is not clear and presents as a significant obstacle in providing effective drug treatment. We aimed to identify subtypes of GC and explore the underlying pathogenesis. We collected two microarray datasets from GEO (GSE84433 and GSE84426), performed an unsupervised cluster analysis based on gene expression patterns, and identified related immune and stromal cells. Then, we explored the possible molecular mechanisms of each subtype by functional enrichment analysis and identified related hub genes. First, we identified three clusters of GC by unsupervised hierarchical clustering, with average silhouette width of 0.96, and also identified their related representative genes and immune cells. We validated our findings using dataset GSE84426. Subtypes associated with the highest mortality (subtype 2 in the training group and subtype C in the validation group) showed high expression of SPARC, COL3A1, and CCN. Both subtypes also showed high infiltration of fibroblasts, endothelial cells, hematopoietic stem cells, and a high stromal score. Furthermore, subtypes with the best prognosis (subtype 3 in the training group and subtype A in the validation group) showed high expression of FGL2, DLGAP1-AS5, and so on. Both subtypes also showed high infiltration of CD4 T cells, CD8 T cells, NK cells, pDC, macrophages, and CD4 T effector memory cells. We found that GC can be classified into three subtypes based on gene expression patterns and cell composition. Findings of this study help us better understand the tumor microenvironment and immune milieu associated with heterogeneity in GC and provide practical information to guide personalized treatment.
胃癌(GC)异质性的发病机制尚不清楚,是提供有效药物治疗的重大障碍。我们旨在识别GC的亚型并探索其潜在发病机制。我们从基因表达综合数据库(GEO)收集了两个微阵列数据集(GSE84433和GSE84426),基于基因表达模式进行无监督聚类分析,并识别相关的免疫和基质细胞。然后,我们通过功能富集分析探索各亚型可能的分子机制,并识别相关的核心基因。首先,我们通过无监督层次聚类识别出GC的三个簇,平均轮廓宽度为0.96,还识别出它们相关的代表性基因和免疫细胞。我们使用数据集GSE84426验证了我们的发现。与最高死亡率相关的亚型(训练组中的亚型2和验证组中的亚型C)显示出富含半胱氨酸的酸性分泌蛋白(SPARC)、Ⅲ型胶原蛋白α1(COL3A1)和细胞周期蛋白(CCN)的高表达。这两种亚型还显示出成纤维细胞、内皮细胞、造血干细胞的高浸润以及高基质评分。此外,预后最佳的亚型(训练组中的亚型3和验证组中的亚型A)显示出纤维介素2(FGL2)、Dlgap1反义RNA5(DLGAP1-AS5)等的高表达。这两种亚型还显示出CD4 T细胞、CD8 T细胞、自然杀伤(NK)细胞、浆细胞样树突状细胞(pDC)、巨噬细胞和CD4效应记忆T细胞的高浸润。我们发现,基于基因表达模式和细胞组成,GC可分为三个亚型。本研究结果有助于我们更好地理解与GC异质性相关的肿瘤微环境和免疫环境,并为指导个性化治疗提供实用信息。