Suppr超能文献

机器学习在肺功能评估中的应用:我们现在何处,又将走向何方?

Application of Machine Learning in Pulmonary Function Assessment Where Are We Now and Where Are We Going?

作者信息

Giri Paresh C, Chowdhury Anand M, Bedoya Armando, Chen Hengji, Lee Hyun Suk, Lee Patty, Henriquez Craig, MacIntyre Neil R, Huang Yuh-Chin T

机构信息

Division of Pulmonary and Critical Care Medicine, Loma Linda University Medical Center, Loma Linda, CA, United States.

Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States.

出版信息

Front Physiol. 2021 Jun 24;12:678540. doi: 10.3389/fphys.2021.678540. eCollection 2021.

Abstract

Analysis of pulmonary function tests (PFTs) is an area where machine learning (ML) may benefit clinicians, researchers, and the patients. PFT measures spirometry, lung volumes, and carbon monoxide diffusion capacity of the lung (DLCO). The results are usually interpreted by the clinicians using discrete numeric data according to published guidelines. PFT interpretations by clinicians, however, are known to have inter-rater variability and the inaccuracy can impact patient care. This variability may be caused by unfamiliarity of the guidelines, lack of training, inadequate understanding of lung physiology, or simply mental lapses. A rules-based automated interpretation system can recapitulate expert's pattern recognition capability and decrease errors. ML can also be used to analyze continuous data or the graphics, including the flow-volume loop, the DLCO and the nitrogen washout curves. These analyses can discover novel physiological biomarkers. In the era of wearables and telehealth, particularly with the COVID-19 pandemic restricting PFTs to be done in the clinical laboratories, ML can also be used to combine mobile spirometry results with an individual's clinical profile to deliver precision medicine. There are, however, hurdles in the development and commercialization of the ML-assisted PFT interpretation programs, including the need for high quality representative data, the existence of different formats for data acquisition and sharing in PFT software by different vendors, and the need for collaboration amongst clinicians, biomedical engineers, and information technologists. Hurdles notwithstanding, the new developments would represent significant advances that could be the future of PFT, the oldest test still in use in clinical medicine.

摘要

肺功能测试(PFTs)分析是一个机器学习(ML)可为临床医生、研究人员和患者带来益处的领域。PFT测量肺活量、肺容积和肺一氧化碳弥散量(DLCO)。临床医生通常会根据已发布的指南,使用离散数值数据来解读这些结果。然而,已知临床医生对PFT的解读存在评分者间差异,这种不准确性会影响患者护理。这种差异可能是由于对指南不熟悉、缺乏培训、对肺生理学理解不足,或者仅仅是疏忽所致。基于规则的自动解读系统可以重现专家的模式识别能力并减少错误。ML还可用于分析连续数据或图形,包括流量-容积环、DLCO和氮洗脱曲线。这些分析可以发现新的生理生物标志物。在可穿戴设备和远程医疗时代,特别是在COVID-19大流行限制PFT只能在临床实验室进行的情况下,ML还可用于将便携式肺活量测定结果与个体的临床资料相结合,以提供精准医疗。然而,ML辅助的PFT解读程序在开发和商业化方面存在障碍,包括需要高质量的代表性数据、不同供应商的PFT软件中存在不同的数据采集和共享格式,以及临床医生、生物医学工程师和信息技术专家之间需要开展合作。尽管存在障碍,但这些新进展将代表重大进步,可能成为PFT的未来发展方向,而PFT是临床医学中仍在使用的最古老的测试方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb59/8264499/dbef7848e426/fphys-12-678540-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验