Suppr超能文献

预测接受化疗门诊患者的晚间疲劳严重程度:少可能更好。

Prediction of evening fatigue severity in outpatients receiving chemotherapy: less may be more.

作者信息

Kober Kord M, Roy Ritu, Dhruva Anand, Conley Yvette P, Chan Raymond J, Cooper Bruce, Olshen Adam, Miaskowski Christine

机构信息

School of Nursing, University of California, San Francisco, USA.

Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA.

出版信息

Fatigue. 2021;9(1):14-32. doi: 10.1080/21641846.2021.1885119. Epub 2021 Feb 16.

Abstract

BACKGROUND

Fatigue is the most common and debilitating symptom experienced by oncology patients undergoing chemotherapy. Little is known about patient characteristics that predict changes in fatigue severity over time.

PURPOSE

To predict the severity of evening fatigue in the week following the administration of chemotherapy using machine learning approaches.

METHODS

Outpatients with breast, gastrointestinal, gynecological, or lung cancer (=1217) completed questionnaires one week prior to and one week following administration of chemotherapy. Evening fatigue was measured with the Lee Fatigue Scale (LFS). Separate prediction models for evening fatigue severity were created using clinical, symptom, and psychosocial adjustment characteristics and either evening fatigue scores or individual fatigue item scores. Prediction models were created using two regression and three machine learning approaches.

RESULTS

Random forest (RF) models provided the best fit across all models. For the RF model using individual LFS item scores, two of the 13 individual LFS items (i.e., "worn out", "exhausted") were the strongest predictors.

CONCLUSION

This study is the first to use machine learning techniques to predict evening fatigue severity in the week following chemotherapy from fatigue scores obtained in the week prior to chemotherapy. Our findings suggest that the language used to assess clinical fatigue in oncology patients is important and that two simple questions may be used to predict evening fatigue severity.

摘要

背景

疲劳是接受化疗的肿瘤患者最常见且使人衰弱的症状。对于预测疲劳严重程度随时间变化的患者特征,我们知之甚少。

目的

使用机器学习方法预测化疗给药后一周内晚间疲劳的严重程度。

方法

患有乳腺癌、胃肠道癌、妇科癌或肺癌的门诊患者(=1217)在化疗给药前一周和给药后一周完成问卷调查。使用李氏疲劳量表(LFS)测量晚间疲劳。使用临床、症状和心理社会适应特征以及晚间疲劳评分或单个疲劳项目评分,建立晚间疲劳严重程度的单独预测模型。使用两种回归方法和三种机器学习方法创建预测模型。

结果

随机森林(RF)模型在所有模型中拟合效果最佳。对于使用单个LFS项目评分的RF模型,13个单个LFS项目中的两个(即“疲惫不堪”、“精疲力竭”)是最强的预测因素。

结论

本研究首次使用机器学习技术,根据化疗前一周获得的疲劳评分来预测化疗后一周内晚间疲劳的严重程度。我们的研究结果表明,用于评估肿瘤患者临床疲劳的语言很重要,两个简单的问题可用于预测晚间疲劳严重程度。

相似文献

4
Trajectories of Evening Fatigue in Oncology Outpatients Receiving Chemotherapy.接受化疗的肿瘤门诊患者夜间疲劳轨迹
J Pain Symptom Manage. 2015 Aug;50(2):163-75. doi: 10.1016/j.jpainsymman.2015.02.015. Epub 2015 Mar 28.
6
Predictors and Trajectories of Morning Fatigue Are Distinct From Evening Fatigue.早晨疲劳的预测因素和轨迹与傍晚疲劳不同。
J Pain Symptom Manage. 2015 Aug;50(2):176-89. doi: 10.1016/j.jpainsymman.2015.02.016. Epub 2015 Mar 28.
10

引用本文的文献

本文引用的文献

4
Learning from data to predict future symptoms of oncology patients.从数据中学习预测肿瘤患者未来的症状。
PLoS One. 2018 Dec 31;13(12):e0208808. doi: 10.1371/journal.pone.0208808. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验