Brzhezinskaya Maria, Kononenko Oleg, Matveev Victor, Zotov Aleksandr, Khodos Igor I, Levashov Vladimir, Volkov Vladimir, Bozhko Sergey I, Chekmazov Sergey V, Roshchupkin Dmitry
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Academician Ossipyan Str. 6, Chernogolovka 142432, Russian Federation.
ACS Nano. 2021 Jul 27;15(7):12358-12366. doi: 10.1021/acsnano.1c04286. Epub 2021 Jul 13.
Because of their unique atomic structure, 2 materials are able to create an up-to-date paradigm in fundamental science and technology on the way to engineering the band structure and electronic properties of materials on the nanoscale. One of the simplest methods along this path is the superposition of several 2 nanomaterials while simultaneously specifying the twist angle between adjacent layers (θ), which leads to the emergence of Moiré superlattices. The key challenge in 2 nanoelectronics is to obtain a nanomaterial with numerous Moiré superlattices in addition to a high carrier mobility in a stable and easy-to-fabricate material. Here, we demonstrate the possibility of synthesizing twisted multilayer graphene (tMLG) with a number of monolayers = 40-250 and predefined narrow ranges of θ = 3-8°, θ = 11-15°, and θ = 26-30°. A 2 nature of the electron transport is observed in the tMLG, and its carrier mobilities are close to those of twisted bilayer graphene (tBLG) (with θ = 30°) between h-BN layers. We demonstrate an undoubtful presence of numerous Moiré superlattices simultaneously throughout the entire tMLG thickness, while the periods of these superlattices are rather close to each other. This offers a challenge of producing a next generation of devices for nanoelectronics, twistronics, and neuromorphic computing for large data applications.
由于其独特的原子结构,两种材料能够在纳米尺度上设计材料的能带结构和电子特性的过程中,在基础科学和技术领域创造一种最新的范式。沿着这条道路最简单的方法之一是叠加几种二维纳米材料,同时指定相邻层之间的扭转角(θ),这会导致莫尔超晶格的出现。二维纳米电子学中的关键挑战是,要在一种稳定且易于制造的材料中,获得一种除了具有高载流子迁移率之外,还拥有大量莫尔超晶格的纳米材料。在此,我们展示了合成层数为40 - 250层、且扭转角θ预定义在狭窄范围(θ = 3 - 8°、θ = 11 - 15°和θ = 26 - 30°)的扭曲多层石墨烯(tMLG)的可能性。在tMLG中观察到了电子输运的二维特性,其载流子迁移率与h - BN层之间的扭曲双层石墨烯(tBLG)(θ = 30°)相近。我们证明了在整个tMLG厚度范围内同时存在大量莫尔超晶格,而且这些超晶格的周期彼此相当接近。这为生产用于大数据应用的下一代纳米电子学、自旋电子学和神经形态计算设备带来了挑战。