Suppr超能文献

稀疏编码的快速逼近及其在目标识别中的应用。

Fast Approximation for Sparse Coding with Applications to Object Recognition.

机构信息

The College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China.

出版信息

Sensors (Basel). 2021 Feb 19;21(4):1442. doi: 10.3390/s21041442.

Abstract

Sparse Coding (SC) has been widely studied and shown its superiority in the fields of signal processing, statistics, and machine learning. However, due to the high computational cost of the optimization algorithms required to compute the sparse feature, the applicability of SC to real-time object recognition tasks is limited. Many deep neural networks have been constructed to low fast estimate the sparse feature with the help of a large number of training samples, which is not suitable for small-scale datasets. Therefore, this work presents a simple and efficient fast approximation method for SC, in which a special single-hidden-layer neural network (SLNNs) is constructed to perform the approximation task, and the optimal sparse features of training samples exactly computed by sparse coding algorithm are used as ground truth to train the SLNNs. After training, the proposed SLNNs can quickly estimate sparse features for testing samples. Ten benchmark data sets taken from UCI databases and two face image datasets are used for experiment, and the low root mean square error (RMSE) results between the approximated sparse features and the optimal ones have verified the approximation performance of this proposed method. Furthermore, the recognition results demonstrate that the proposed method can effectively reduce the computational time of testing process while maintaining the recognition performance, and outperforms several state-of-the-art fast approximation sparse coding methods, as well as the exact sparse coding algorithms.

摘要

稀疏编码 (SC) 在信号处理、统计学和机器学习领域得到了广泛的研究,并显示出其优越性。然而,由于计算稀疏特征所需的优化算法的计算成本较高,SC 在实时目标识别任务中的适用性受到限制。许多深度神经网络已经被构建来借助大量训练样本快速估计稀疏特征,这对于小规模数据集来说是不适用的。因此,这项工作提出了一种简单而有效的 SC 快速逼近方法,其中构建了一个特殊的单隐藏层神经网络 (SLNNs) 来执行逼近任务,并且使用稀疏编码算法精确计算的训练样本的最优稀疏特征作为真实值来训练 SLNNs。训练后,所提出的 SLNNs 可以快速估计测试样本的稀疏特征。从 UCI 数据库中选取了十个基准数据集和两个人脸图像数据集进行实验,逼近稀疏特征和最优稀疏特征之间的低均方根误差 (RMSE) 结果验证了该方法的逼近性能。此外,识别结果表明,该方法可以在保持识别性能的同时,有效地减少测试过程的计算时间,并且优于几种最新的快速逼近稀疏编码方法以及精确稀疏编码算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/498f/7923134/4f66f2bc131d/sensors-21-01442-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验