Suppr超能文献

神经磁共振成像数据的统一理论表明连接模式具有无标度性质。

A Unified Theory of Neuro-MRI Data Shows Scale-Free Nature of Connectivity Modes.

作者信息

Galinsky Vitaly L, Frank Lawrence R

机构信息

Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92093-0854, U.S.A., and Electrical and Computer Engineering Department, University of California at San Diego, La Jolla, CA 92093-0407, U.S.A.

Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92093-0854, U.S.A.; Department of Radiology, University of California at San Diego, La Jolla, CA 92093-0854, U.S.A.; and VA San Diego Healthcare System, San Diego, CA 92161, U.S.A.

出版信息

Neural Comput. 2017 Jun;29(6):1441-1467. doi: 10.1162/NECO_a_00955. Epub 2017 Mar 23.

Abstract

A primary goal of many neuroimaging studies that use magnetic resonance imaging (MRI) is to deduce the structure-function relationships in the human brain using data from the three major neuro-MRI modalities: high-resolution anatomical, diffusion tensor imaging, and functional MRI. To date, the general procedure for analyzing these data is to combine the results derived independently from each of these modalities. In this article, we develop a new theoretical and computational approach for combining these different MRI modalities into a powerful and versatile framework that combines our recently developed methods for morphological shape analysis and segmentation, simultaneous local diffusion estimation and global tractography, and nonlinear and nongaussian spatial-temporal activation pattern classification and ranking, as well as our fast and accurate approach for nonlinear registration between modalities. This joint analysis method is capable of extracting new levels of information that is not achievable from any of those single modalities alone. A theoretical probabilistic framework based on a reformulation of prior information and available interdependencies between modalities through a joint coupling matrix and an efficient computational implementation allows construction of quantitative functional, structural, and effective brain connectivity modes and parcellation. This new method provides an overall increase of resolution, accuracy, level of detail, and information content and has the potential to be instrumental in the clinical adaptation of neuro-MRI modalities, which, when jointly analyzed, provide a more comprehensive view of a subject's structure-function relations, while the current standard, wherein single-modality methods are analyzed separately, leaves a critical gap in an integrated view of a subject's neuorphysiological state. As one example of this increased sensitivity, we demonstrate that the jointly estimated structural and functional dependencies of mode power follow the same power law decay with the same exponent.

摘要

许多使用磁共振成像(MRI)的神经成像研究的一个主要目标是利用来自三种主要神经MRI模态的数据推断人类大脑中的结构-功能关系:高分辨率解剖成像、扩散张量成像和功能MRI。迄今为止,分析这些数据的一般程序是将从每种模态独立得出的结果进行合并。在本文中,我们开发了一种新的理论和计算方法,将这些不同的MRI模态整合到一个强大且通用的框架中,该框架结合了我们最近开发的形态形状分析和分割方法、同步局部扩散估计和全局纤维束成像方法、非线性和非高斯时空激活模式分类和排序方法,以及我们用于模态间非线性配准的快速准确方法。这种联合分析方法能够提取单独从任何一种单一模态都无法获得的新层次信息。基于通过联合耦合矩阵对先验信息和模态间可用相互依存关系进行重新表述的理论概率框架以及高效的计算实现,允许构建定量的功能、结构和有效脑连接模式以及脑区划分。这种新方法在分辨率、准确性、细节程度和信息含量方面全面提高,并且有可能在神经MRI模态的临床应用中发挥重要作用,当对这些模态进行联合分析时,能提供关于受试者结构-功能关系的更全面视图,而目前单独分析单模态方法留下了受试者神经生理状态综合视图的关键空白。作为这种提高的敏感性的一个例子,我们证明联合估计的模态功率的结构和功能依赖性遵循相同的幂律衰减且指数相同。

相似文献

1
A Unified Theory of Neuro-MRI Data Shows Scale-Free Nature of Connectivity Modes.
Neural Comput. 2017 Jun;29(6):1441-1467. doi: 10.1162/NECO_a_00955. Epub 2017 Mar 23.
4
Joint Estimation of Effective Brain Wave Activation Modes Using EEG/MEG Sensor Arrays and Multimodal MRI Volumes.
Neural Comput. 2018 Jul;30(7):1725-1749. doi: 10.1162/neco_a_01087. Epub 2018 Apr 13.
6
Imaging structural and functional connectivity: towards a unified definition of human brain organization?
Curr Opin Neurol. 2008 Aug;21(4):393-403. doi: 10.1097/WCO.0b013e3283065cfb.
7
The relation between structural and functional connectivity patterns in complex brain networks.
Int J Psychophysiol. 2016 May;103:149-60. doi: 10.1016/j.ijpsycho.2015.02.011. Epub 2015 Feb 10.
10
Multi-View Ensemble Classification of Brain Connectivity Images for Neurodegeneration Type Discrimination.
Neuroinformatics. 2017 Apr;15(2):199-213. doi: 10.1007/s12021-017-9324-2.

引用本文的文献

1
Imaging of brain electric field networks with spatially resolved EEG.
Elife. 2025 Jun 5;13:RP100123. doi: 10.7554/eLife.100123.
2
Characterizing the dynamics of multi-scale global high impact weather events.
Sci Rep. 2024 Aug 15;14(1):18942. doi: 10.1038/s41598-024-67662-x.
3
Imaging of brain electric field networks with spatially resolved EEG.
Res Sq. 2025 Mar 12:rs.3.rs-2432269. doi: 10.21203/rs.3.rs-2432269/v2.
4
Unveiling the third dimension in morphometry with automated quantitative volumetric computations.
Sci Rep. 2021 Jul 14;11(1):14438. doi: 10.1038/s41598-021-93490-4.
6
Functional clustering of whole brain white matter fibers.
J Neurosci Methods. 2020 Apr 1;335:108626. doi: 10.1016/j.jneumeth.2020.108626. Epub 2020 Feb 4.
7
JEDI: Joint Estimation Diffusion Imaging of macroscopic and microscopic tissue properties.
Magn Reson Med. 2020 Aug;84(2):966-990. doi: 10.1002/mrm.28141. Epub 2020 Jan 9.
8
Challenges in diffusion MRI tractography - Lessons learned from international benchmark competitions.
Magn Reson Imaging. 2019 Apr;57:194-209. doi: 10.1016/j.mri.2018.11.014. Epub 2018 Nov 29.
9
Limits to anatomical accuracy of diffusion tractography using modern approaches.
Neuroimage. 2019 Jan 15;185:1-11. doi: 10.1016/j.neuroimage.2018.10.029. Epub 2018 Oct 11.
10
Functional tractography of white matter by high angular resolution functional-correlation imaging (HARFI).
Magn Reson Med. 2019 Mar;81(3):2011-2024. doi: 10.1002/mrm.27512. Epub 2018 Sep 18.

本文引用的文献

1
Symplectomorphic registration with phase space regularization by entropy spectrum pathways.
Magn Reson Med. 2019 Feb;81(2):1335-1352. doi: 10.1002/mrm.27402. Epub 2018 Sep 19.
2
Detecting Spatio-Temporal Modes in Multivariate Data by Entropy Field Decomposition.
J Phys A Math Theor. 2016 Sep 30;49(39). doi: 10.1088/1751-8113/49/39/395001. Epub 2016 Sep 6.
3
The Lamellar Structure of the Brain Fiber Pathways.
Neural Comput. 2016 Nov;28(11):2533-2556. doi: 10.1162/NECO_a_00896. Epub 2016 Sep 14.
4
Dynamic Multiscale Modes of Resting State Brain Activity Detected by Entropy Field Decomposition.
Neural Comput. 2016 Sep;28(9):1769-811. doi: 10.1162/NECO_a_00871. Epub 2016 Jul 8.
5
Simultaneous multi-scale diffusion estimation and tractography guided by entropy spectrum pathways.
IEEE Trans Med Imaging. 2015 May;34(5):1177-93. doi: 10.1109/TMI.2014.2380812. Epub 2014 Dec 18.
6
A common brain network links development, aging, and vulnerability to disease.
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17648-53. doi: 10.1073/pnas.1410378111. Epub 2014 Nov 24.
7
Time-resolved resting-state brain networks.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10341-6. doi: 10.1073/pnas.1400181111. Epub 2014 Jun 30.
8
Identification of optimal structural connectivity using functional connectivity and neural modeling.
J Neurosci. 2014 Jun 4;34(23):7910-6. doi: 10.1523/JNEUROSCI.4423-13.2014.
9
Information pathways in a disordered lattice.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032142. doi: 10.1103/PhysRevE.89.032142. Epub 2014 Mar 31.
10
Automated segmentation and shape characterization of volumetric data.
Neuroimage. 2014 May 15;92:156-68. doi: 10.1016/j.neuroimage.2014.01.053. Epub 2014 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验