Suppr超能文献

基于深度学习的脑胶质瘤和脑转移瘤瘤周微环境特征分析,揭示肿瘤异质性特征。

Distinct tumor signatures using deep learning-based characterization of the peritumoral microenvironment in glioblastomas and brain metastases.

机构信息

Diffusion and Connectomics in Precision Healthcare Research Lab (DiCIPHR), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.

Department of Radiology, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Sci Rep. 2021 Jul 14;11(1):14469. doi: 10.1038/s41598-021-93804-6.

Abstract

Tumor types are classically distinguished based on biopsies of the tumor itself, as well as a radiological interpretation using diverse MRI modalities. In the current study, the overarching goal is to demonstrate that primary (glioblastomas) and secondary (brain metastases) malignancies can be differentiated based on the microstructure of the peritumoral region. This is achieved by exploiting the extracellular water differences between vasogenic edema and infiltrative tissue and training a convolutional neural network (CNN) on the Diffusion Tensor Imaging (DTI)-derived free water volume fraction. We obtained 85% accuracy in discriminating extracellular water differences between local patches in the peritumoral area of 66 glioblastomas and 40 metastatic patients in a cross-validation setting. On an independent test cohort consisting of 20 glioblastomas and 10 metastases, we got 93% accuracy in discriminating metastases from glioblastomas using majority voting on patches. This level of accuracy surpasses CNNs trained on other conventional DTI-based measures such as fractional anisotropy (FA) and mean diffusivity (MD), that have been used in other studies. Additionally, the CNN captures the peritumoral heterogeneity better than conventional texture features, including Gabor and radiomic features. Our results demonstrate that the extracellular water content of the peritumoral tissue, as captured by the free water volume fraction, is best able to characterize the differences between infiltrative and vasogenic peritumoral regions, paving the way for its use in classifying and benchmarking peritumoral tissue with varying degrees of infiltration.

摘要

肿瘤类型通常基于肿瘤本身的活检以及使用多种 MRI 模式的影像学解释来进行区分。在当前的研究中,主要目标是证明原发性(胶质母细胞瘤)和继发性(脑转移瘤)恶性肿瘤可以基于肿瘤周围区域的微观结构进行区分。这是通过利用血管源性水肿和浸润性组织之间的细胞外水分差异,并在弥散张量成像(DTI)衍生的自由水分数上训练卷积神经网络(CNN)来实现的。我们在交叉验证设置中,对 66 例胶质母细胞瘤和 40 例转移性患者的肿瘤周围区域局部斑块的细胞外水分差异进行了分类,准确率达到 85%。在由 20 例胶质母细胞瘤和 10 例转移瘤组成的独立测试队列中,我们通过对斑块进行多数投票,在区分转移瘤和胶质母细胞瘤方面的准确率达到 93%。这一准确率超过了在其他研究中使用的基于其他传统 DTI 测量的 CNN,如分数各向异性(FA)和平均弥散度(MD)。此外,CNN 比传统纹理特征(包括 Gabor 和放射组学特征)更好地捕捉肿瘤周围的异质性。我们的结果表明,肿瘤周围组织的细胞外水分含量,如自由水分数所捕获的,最能描述浸润性和血管源性肿瘤周围区域之间的差异,为其在分类和基准化具有不同浸润程度的肿瘤周围组织方面的应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2ce/8280204/0816fe0eceb0/41598_2021_93804_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验