Suppr超能文献

基于人工智能的磁共振成像分割技术用于单发性脑转移瘤与胶质母细胞瘤的鉴别诊断

Artificial Intelligence-Based MRI Segmentation for the Differential Diagnosis of Single Brain Metastasis and Glioblastoma.

作者信息

Pomohaci Daniela, Marciuc Emilia-Adriana, Dobrovăț Bogdan-Ionuț, Popescu Mihaela-Roxana, Istrate Ana-Cristina, Onicescu Oniciuc Oriana-Maria, Chirica Sabina-Ioana, Chirica Costin, Haba Danisia

机构信息

Doctoral School, Grigore T. Popa University of Medicine and Pharmacy, 16 Universității Str., 700115 Iasi, Romania.

Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universității Str., 700115 Iasi, Romania.

出版信息

Diagnostics (Basel). 2025 Sep 5;15(17):2248. doi: 10.3390/diagnostics15172248.

Abstract

: Glioblastomas (GBMs) and brain metastases (BMs) are both frequent brain lesions. Distinguishing between them is crucial for suitable therapeutic and follow-up decisions, but this distinction is difficult to achieve, as it includes clinical, radiological and histopathological correlation. However, non-invasive AI examination of conventional and advanced MRI techniques can overcome this issue. : We retrospectively selected 78 patients with confirmed GBM (39) and single BM (39), with conventional MRI investigations, consisting of T2W FLAIR and CE T1W acquisitions. The MRI images (DICOM) were evaluated by an AI segmentation tool, comparatively evaluating tumor heterogeneity and peripheral edema. : We found that GBMs are less edematous than BMs ( = 0.04) but have more internal necrosis ( = 0.002). Of the BM primary cancer molecular subtypes, NSCCL showed the highest grade of edema ( = 0.01). Compared with the ellipsoidal method of volume calculation, the AI machine obtained greater values when measuring lesions of the occipital and temporal lobes ( = 0.01). : Although extremely useful in radiomics analysis, automated segmentation applied alone could effectively differentiate GBM and BM on a conventional MRI, calculating the ratio between their variable components (solid, necrotic and peripheral edema). Other studies applied to a broader set of participants are necessary to further evaluate the efficacy of automated segmentation.

摘要

胶质母细胞瘤(GBM)和脑转移瘤(BM)都是常见的脑部病变。区分它们对于做出合适的治疗和随访决策至关重要,但这种区分很难实现,因为它需要临床、放射学和组织病理学的相互关联。然而,对传统和先进的MRI技术进行非侵入性人工智能检查可以克服这个问题。

我们回顾性地选择了78例确诊为GBM(39例)和单发BM(39例)的患者,进行了包括T2W FLAIR和CE T1W采集的传统MRI检查。通过人工智能分割工具对MRI图像(DICOM)进行评估,比较评估肿瘤异质性和周边水肿情况。

我们发现GBM的水肿程度低于BM(P = 0.04),但内部坏死更多(P = 0.002)。在BM原发癌分子亚型中,非小细胞癌(NSCCL)的水肿程度最高(P = 0.01)。与椭球体体积计算方法相比,人工智能机器在测量枕叶和颞叶病变时获得的值更大(P = 0.01)。

尽管在放射组学分析中非常有用,但单独应用自动分割在传统MRI上就能有效区分GBM和BM,计算它们可变成分(实性、坏死和周边水肿)之间的比例。需要对更广泛的参与者进行其他研究,以进一步评估自动分割的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0e6/12428284/16d512407dbb/diagnostics-15-02248-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验