Department of Radiology, National Health Insurance Service Ilsan Hospital, Goyang, 10444, Korea.
Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang, 10444, Korea.
Sci Rep. 2020 Jul 21;10(1):12110. doi: 10.1038/s41598-020-68980-6.
We evaluated the diagnostic performance and generalizability of traditional machine learning and deep learning models for distinguishing glioblastoma from single brain metastasis using radiomics. The training and external validation cohorts comprised 166 (109 glioblastomas and 57 metastases) and 82 (50 glioblastomas and 32 metastases) patients, respectively. Two-hundred-and-sixty-five radiomic features were extracted from semiautomatically segmented regions on contrast-enhancing and peritumoral T2 hyperintense masks and used as input data. For each of a deep neural network (DNN) and seven traditional machine learning classifiers combined with one of five feature selection methods, hyperparameters were optimized through tenfold cross-validation in the training cohort. The diagnostic performance of the optimized models and two neuroradiologists was tested in the validation cohort for distinguishing glioblastoma from metastasis. In the external validation, DNN showed the highest diagnostic performance, with an area under receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy of 0.956 (95% confidence interval [CI], 0.918-0.990), 90.6% (95% CI, 80.5-100), 88.0% (95% CI, 79.0-97.0), and 89.0% (95% CI, 82.3-95.8), respectively, compared to the best-performing traditional machine learning model (adaptive boosting combined with tree-based feature selection; AUC, 0.890 (95% CI, 0.823-0.947)) and human readers (AUC, 0.774 [95% CI, 0.685-0.852] and 0.904 [95% CI, 0.852-0.951]). The results demonstrated deep learning using radiomic features can be useful for distinguishing glioblastoma from metastasis with good generalizability.
我们评估了使用放射组学区分胶质母细胞瘤和单一脑转移瘤的传统机器学习和深度学习模型的诊断性能和泛化能力。训练和外部验证队列分别包含 166 名(109 名胶质母细胞瘤和 57 名转移瘤)和 82 名(50 名胶质母细胞瘤和 32 名转移瘤)患者。从对比增强和瘤周 T2 高信号掩模半自动分割区域提取了 265 个放射组学特征,并将其作为输入数据。对于深度神经网络(DNN)和与五种特征选择方法之一结合的七种传统机器学习分类器中的每一种,通过在训练队列中进行十折交叉验证优化超参数。在验证队列中,测试了优化模型和两位神经放射科医生对区分胶质母细胞瘤和转移瘤的诊断性能。在外部验证中,DNN 显示出最高的诊断性能,其接受者操作特征曲线(ROC)下面积(AUC)、敏感性、特异性和准确性分别为 0.956(95%置信区间[CI],0.918-0.990)、90.6%(95% CI,80.5-100)、88.0%(95% CI,79.0-97.0)和 89.0%(95% CI,82.3-95.8),与表现最好的传统机器学习模型(自适应增强与基于树的特征选择相结合;AUC,0.890(95% CI,0.823-0.947))和人类读者(AUC,0.774[95% CI,0.685-0.852]和 0.904[95% CI,0.852-0.951])相比。结果表明,使用放射组学特征的深度学习可用于区分胶质母细胞瘤和转移瘤,具有良好的泛化能力。