Suppr超能文献

基于多重分形和多尺度熵分析的阿尔茨海默病脑电图信号识别

Identification of Electroencephalogram Signals in Alzheimer's Disease by Multifractal and Multiscale Entropy Analysis.

作者信息

Ando Momo, Nobukawa Sou, Kikuchi Mitsuru, Takahashi Tetsuya

机构信息

Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan.

Department of Computer Science, Chiba Institute of Technology, Narashino, Japan.

出版信息

Front Neurosci. 2021 Jun 28;15:667614. doi: 10.3389/fnins.2021.667614. eCollection 2021.

Abstract

Alzheimer's disease (AD) is the most common form of dementia and is a progressive neurodegenerative disease that primarily develops in old age. In recent years, it has been reported that early diagnosis of AD and early intervention significantly delays disease progression. Hence, early diagnosis and intervention are emphasized. As a diagnostic index for AD patients, evaluating the complexity of the dependence of the electroencephalography (EEG) signal on the temporal scale of Alzheimer's disease (AD) patients is effective. Multiscale entropy analysis and multifractal analysis have been performed individually, and their usefulness as diagnostic indicators has been confirmed, but the complemental relationship between these analyses, which may enhance diagnostic accuracy, has not been investigated. We hypothesize that combining multiscale entropy and fractal analyses may add another dimension to understanding the alteration of EEG dynamics in AD. In this study, we performed both multiscale entropy and multifractal analyses on EEGs from AD patients and healthy subjects. We found that the classification accuracy was improved using both techniques. These findings suggest that the use of multiscale entropy analysis and multifractal analysis may lead to the development of AD diagnostic tools.

摘要

阿尔茨海默病(AD)是最常见的痴呆形式,是一种主要在老年期发展的进行性神经退行性疾病。近年来,有报道称AD的早期诊断和早期干预可显著延缓疾病进展。因此,强调早期诊断和干预。作为AD患者的诊断指标,评估阿尔茨海默病(AD)患者脑电图(EEG)信号在时间尺度上的依赖复杂性是有效的。已经分别进行了多尺度熵分析和多重分形分析,并且它们作为诊断指标的有用性已经得到证实,但是尚未研究这些分析之间可能提高诊断准确性的互补关系。我们假设将多尺度熵和分形分析相结合可能会为理解AD中EEG动力学的改变增加另一个维度。在本研究中,我们对AD患者和健康受试者的脑电图进行了多尺度熵和多重分形分析。我们发现使用这两种技术提高了分类准确率。这些发现表明,多尺度熵分析和多重分形分析的使用可能会导致AD诊断工具的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6191/8273283/19d6a8ace2bd/fnins-15-667614-g0001.jpg

相似文献

1
Identification of Electroencephalogram Signals in Alzheimer's Disease by Multifractal and Multiscale Entropy Analysis.
Front Neurosci. 2021 Jun 28;15:667614. doi: 10.3389/fnins.2021.667614. eCollection 2021.
2
A Novel Metric for Alzheimer's Disease Detection Based on Brain Complexity Analysis via Multiscale Fuzzy Entropy.
Bioengineering (Basel). 2024 Mar 27;11(4):324. doi: 10.3390/bioengineering11040324.
3
Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer's disease.
Prog Neuropsychopharmacol Biol Psychiatry. 2013 Dec 2;47:52-61. doi: 10.1016/j.pnpbp.2013.07.022. Epub 2013 Aug 13.
4
Complexity of EEG Dynamics for Early Diagnosis of Alzheimer's Disease Using Permutation Entropy Neuromarker.
Comput Methods Programs Biomed. 2021 Jul;206:106116. doi: 10.1016/j.cmpb.2021.106116. Epub 2021 Apr 16.
5
EEG Characterization of the Alzheimer's Disease Continuum by Means of Multiscale Entropies.
Entropy (Basel). 2019 May 28;21(6):544. doi: 10.3390/e21060544.
6
Assessment of EEG dynamical complexity in Alzheimer's disease using multiscale entropy.
Clin Neurophysiol. 2010 Sep;121(9):1438-1446. doi: 10.1016/j.clinph.2010.03.025. Epub 2010 Apr 18.
7
Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy.
Physiol Meas. 2006 Nov;27(11):1091-106. doi: 10.1088/0967-3334/27/11/004. Epub 2006 Sep 12.
10
Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer's disease.
Philos Trans A Math Phys Eng Sci. 2009 Jan 28;367(1887):317-36. doi: 10.1098/rsta.2008.0197.

引用本文的文献

4
Automatic detection of Alzheimer's disease from EEG signals using an improved AFS-GA hybrid algorithm.
Cogn Neurodyn. 2024 Oct;18(5):2993-3013. doi: 10.1007/s11571-024-10130-z. Epub 2024 Jun 10.
6
Is EEG Entropy a Useful Measure for Alzheimer's Disease?
Actas Esp Psiquiatr. 2024 Jun;52(3):347-364. doi: 10.62641/aep.v52i3.1632.
8
EEG entropy insights in the context of physiological aging and Alzheimer's and Parkinson's diseases: a comprehensive review.
Geroscience. 2024 Dec;46(6):5537-5557. doi: 10.1007/s11357-024-01185-1. Epub 2024 May 22.
9
Brain complexity in stroke recovery after bihemispheric transcranial direct current stimulation in mice.
Brain Commun. 2024 May 13;6(3):fcae137. doi: 10.1093/braincomms/fcae137. eCollection 2024.
10
A Novel Metric for Alzheimer's Disease Detection Based on Brain Complexity Analysis via Multiscale Fuzzy Entropy.
Bioengineering (Basel). 2024 Mar 27;11(4):324. doi: 10.3390/bioengineering11040324.

本文引用的文献

1
Classification Methods Based on Complexity and Synchronization of Electroencephalography Signals in Alzheimer's Disease.
Front Psychiatry. 2020 Apr 7;11:255. doi: 10.3389/fpsyt.2020.00255. eCollection 2020.
2
EEG multifractal analysis correlates with cognitive testing scores and clinical staging in mild cognitive impairment.
J Clin Neurosci. 2020 Jun;76:195-200. doi: 10.1016/j.jocn.2020.04.003. Epub 2020 Apr 16.
3
A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia.
Neural Netw. 2020 Mar;123:176-190. doi: 10.1016/j.neunet.2019.12.006. Epub 2019 Dec 14.
4
EEG time signature in Alzheimer´s disease: Functional brain networks falling apart.
Neuroimage Clin. 2019;24:102046. doi: 10.1016/j.nicl.2019.102046. Epub 2019 Oct 18.
5
Atypical temporal-scale-specific fractal changes in Alzheimer's disease EEG and their relevance to cognitive decline.
Cogn Neurodyn. 2019 Feb;13(1):1-11. doi: 10.1007/s11571-018-9509-x. Epub 2018 Oct 8.
6
Multifractal Dynamic Functional Connectivity in the Resting-State Brain.
Front Physiol. 2018 Nov 30;9:1704. doi: 10.3389/fphys.2018.01704. eCollection 2018.
8
The GABAergic system as a therapeutic target for Alzheimer's disease.
J Neurochem. 2018 Sep;146(6):649-669. doi: 10.1111/jnc.14345. Epub 2018 Aug 1.
9
Decreased Complexity in Alzheimer's Disease: Resting-State fMRI Evidence of Brain Entropy Mapping.
Front Aging Neurosci. 2017 Nov 20;9:378. doi: 10.3389/fnagi.2017.00378. eCollection 2017.
10
Higuchi fractal dimension of the electroencephalogram as a biomarker for early detection of Alzheimer's disease.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2320-2324. doi: 10.1109/EMBC.2017.8037320.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验