van Gaal Ronald C, Ippel Bastiaan D, Spaans Sergio, Komil Muhabbat I, Dankers Patricia Y W
Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands.
Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands.
J Polym Sci (2020). 2021 Jun 15;59(12):1253-1266. doi: 10.1002/pol.20210073. Epub 2021 Mar 29.
Supramolecular motifs in elastomeric biomaterials facilitate the modular incorporation of additives with corresponding motifs. The influence of the elastomeric supramolecular base polymer on the presentation of additives has been sparsely examined, limiting the knowledge of transferability of effective functionalization between polymers. Here it was investigated if the polymer backbone and the additive influence biomaterial modification in two different types of hydrogen bonding supramolecular systems, that is, based on ureido-pyrimidinone or bis-urea units. Two different cell-adhesive additives, that is, catechol or cyclic RGD, were incorporated into different elastomeric polymers, that is, polycaprolactone, priplast or polycarbonate. The additive effectiveness was evaluated with three different cell types. AFM measurements showed modest alterations on nano-scale assembly in ureido-pyrimidinone materials modified with additives. On the contrary, additive addition was highly intrusive in bis-urea materials. Detailed cell adhesive studies revealed additive effectiveness varied between base polymers and the supramolecular platform, with bis-urea materials more potently affecting cell behavior. This research highlights that additive transposition might not always be as evident. Therefore, additive effectiveness requires re-evaluation in supramolecular biomaterials when altering the polymer backbone to suit the biomaterial application.
弹性体生物材料中的超分子基序有助于将具有相应基序的添加剂进行模块化整合。弹性体超分子基础聚合物对添加剂呈现的影响鲜有研究,这限制了我们对聚合物间有效功能化转移能力的了解。本研究探讨了聚合物主链和添加剂在两种不同类型的氢键超分子体系(即基于脲嘧啶酮或双脲单元的体系)中对生物材料改性的影响。将两种不同的细胞黏附添加剂(即儿茶酚或环状RGD)掺入不同的弹性体聚合物(即聚己内酯、普里普拉斯特或聚碳酸酯)中。用三种不同的细胞类型评估添加剂的有效性。原子力显微镜测量显示,在用添加剂改性的脲嘧啶酮材料中,纳米级组装有适度变化。相反,在双脲材料中添加添加剂具有高度侵入性。详细的细胞黏附研究表明,添加剂的有效性在基础聚合物和超分子平台之间存在差异,双脲材料对细胞行为的影响更强。这项研究强调,添加剂的转移可能并不总是那么明显。因此,当改变聚合物主链以适应生物材料应用时,需要在超分子生物材料中重新评估添加剂的有效性。