Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
Departments of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
Mol Neurobiol. 2021 Oct;58(10):5141-5162. doi: 10.1007/s12035-021-02453-3. Epub 2021 Jul 14.
Basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Down syndrome (DS) and Alzheimer's disease (AD). Current therapeutics have been unsuccessful in slowing disease progression, likely due to complex pathological interactions and dysregulated pathways that are poorly understood. The Ts65Dn trisomic mouse model recapitulates both cognitive and morphological deficits of DS and AD, including BFCN degeneration. We utilized Ts65Dn mice to understand mechanisms underlying BFCN degeneration to identify novel targets for therapeutic intervention. We performed high-throughput, single population RNA sequencing (RNA-seq) to interrogate transcriptomic changes within medial septal nucleus (MSN) BFCNs, using laser capture microdissection to individually isolate ~500 choline acetyltransferase-immunopositive neurons in Ts65Dn and normal disomic (2N) mice at 6 months of age (MO). Ts65Dn mice had unique MSN BFCN transcriptomic profiles at ~6 MO clearly differentiating them from 2N mice. Leveraging Ingenuity Pathway Analysis and KEGG analysis, we linked differentially expressed gene (DEG) changes within MSN BFCNs to several canonical pathways and aberrant physiological functions. The dysregulated transcriptomic profile of trisomic BFCNs provides key information underscoring selective vulnerability within the septohippocampal circuit. We propose both expected and novel therapeutic targets for DS and AD, including specific DEGs within cholinergic, glutamatergic, GABAergic, and neurotrophin pathways, as well as select targets for repairing oxidative phosphorylation status in neurons. We demonstrate and validate this interrogative quantitative bioinformatic analysis of a key dysregulated neuronal population linking single population transcript changes to an established pathological hallmark associated with cognitive decline for therapeutic development in human DS and AD.
基底前脑胆碱能神经元(BFCN)退化是唐氏综合征(DS)和阿尔茨海默病(AD)的标志。目前的治疗方法未能减缓疾病进展,这可能是由于复杂的病理相互作用和调控途径理解不足。Ts65Dn 三体小鼠模型再现了 DS 和 AD 的认知和形态缺陷,包括 BFCN 退化。我们利用 Ts65Dn 小鼠来了解 BFCN 退化的机制,以确定治疗干预的新靶点。我们进行了高通量、单一群体 RNA 测序(RNA-seq),使用激光捕获显微解剖术单独分离 6 个月龄(MO)的 Ts65Dn 和正常二倍体(2N)小鼠中隔核(MSN)BFCN 中的大约 500 个胆碱乙酰转移酶免疫阳性神经元,以研究 MSN BFCN 中的转录组变化。Ts65Dn 小鼠在大约 6MO 时具有独特的 MSN BFCN 转录组谱,明显区别于 2N 小鼠。利用 Ingenuity Pathway Analysis 和 KEGG 分析,我们将 MSN BFCN 中的差异表达基因(DEG)变化与几个典型途径和异常生理功能联系起来。三体 BFCN 的失调转录组谱提供了关键信息,突出了隔海马回路中的选择性脆弱性。我们提出了 DS 和 AD 的预期和新的治疗靶点,包括胆碱能、谷氨酸能、GABA 能和神经营养因子途径内的特定 DEG,以及修复神经元氧化磷酸化状态的特定靶点。我们证明并验证了这种对关键失调神经元群体的询问性定量生物信息学分析,该分析将单一群体转录变化与与认知能力下降相关的既定病理标志联系起来,为人类 DS 和 AD 的治疗开发提供了依据。