École de psychoéducation, Université de Montréal.
Centre de recherche de l'Institut universitaire en santé mentale de Montréal.
J Appl Behav Anal. 2021 Sep;54(4):1541-1552. doi: 10.1002/jaba.863. Epub 2021 Jul 15.
Behavior analysts commonly use visual inspection to analyze single-case graphs, but studies on its reliability have produced mixed results. To examine this issue, we compared the Type I error rate and power of visual inspection with a novel approach-machine learning. Five expert visual raters analyzed 1,024 simulated AB graphs, which differed on number of points per phase, autocorrelation, trend, variability, and effect size. The ratings were compared to those obtained by the conservative dual-criteria method and two models derived from machine learning. On average, visual raters agreed with each other on only 75% of graphs. In contrast, both models derived from machine learning showed the best balance between Type I error rate and power while producing more consistent results across different graph characteristics. The results suggest that machine learning may support researchers and practitioners in making fewer errors when analyzing single-case graphs, but replications remain necessary.
行为分析师通常使用目视检查来分析单例图表,但关于其可靠性的研究结果却参差不齐。为了研究这个问题,我们将目视检查的Ⅰ类错误率和功效与一种新方法——机器学习进行了比较。五位专家目视评估员分析了 1024 个模拟的 AB 图表,这些图表在每个阶段的点数、自相关、趋势、变异性和效果大小上有所不同。评估结果与保守的双重标准方法和两种源自机器学习的模型进行了比较。平均而言,目视评估员在 75%的图表上彼此达成一致。相比之下,源自机器学习的两种模型在Ⅰ类错误率和功效之间表现出最佳的平衡,同时在不同的图表特征下产生更一致的结果。研究结果表明,机器学习可能支持研究人员和从业者在分析单例图表时减少错误,但仍需要进行复制。