Suppr超能文献

医学与分子影像中生成对抗网络的叙述性综述

Narrative review of generative adversarial networks in medical and molecular imaging.

作者信息

Koshino Kazuhiro, Werner Rudolf A, Pomper Martin G, Bundschuh Ralph A, Toriumi Fujio, Higuchi Takahiro, Rowe Steven P

机构信息

Department of Systems and Informatics, Hokkaido Information University, Ebetsu, Japan.

The Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA.

出版信息

Ann Transl Med. 2021 May;9(9):821. doi: 10.21037/atm-20-6325.

Abstract

Recent years have witnessed a rapidly expanding use of artificial intelligence and machine learning in medical imaging. Generative adversarial networks (GANs) are techniques to synthesize images based on artificial neural networks and deep learning. In addition to the flexibility and versatility inherent in deep learning on which the GANs are based, the potential problem-solving ability of the GANs has attracted attention and is being vigorously studied in the medical and molecular imaging fields. Here this narrative review provides a comprehensive overview for GANs and discuss their usefulness in medical and molecular imaging on the following topics: (I) data augmentation to increase training data for AI-based computer-aided diagnosis as a solution for the data-hungry nature of such training sets; (II) modality conversion to complement the shortcomings of a single modality that reflects certain physical measurement principles, such as from magnetic resonance (MR) to computed tomography (CT) images or vice versa; (III) de-noising to realize less injection and/or radiation dose for nuclear medicine and CT; (IV) image reconstruction for shortening MR acquisition time while maintaining high image quality; (V) super-resolution to produce a high-resolution image from low-resolution one; (VI) domain adaptation which utilizes knowledge such as supervised labels and annotations from a source domain to the target domain with no or insufficient knowledge; and (VII) image generation with disease severity and radiogenomics. GANs are promising tools for medical and molecular imaging. The progress of model architectures and their applications should continue to be noteworthy.

摘要

近年来,人工智能和机器学习在医学成像中的应用迅速扩展。生成对抗网络(GAN)是基于人工神经网络和深度学习来合成图像的技术。除了GAN所基于的深度学习固有的灵活性和通用性之外,GAN潜在的问题解决能力也已引起关注,并正在医学和分子成像领域中得到大力研究。在此,这篇叙述性综述对GAN进行了全面概述,并就以下主题讨论了它们在医学和分子成像中的实用性:(I)数据增强,以增加基于人工智能的计算机辅助诊断的训练数据,作为解决此类训练集对数据需求巨大这一特性的方法;(II)模态转换,以弥补反映特定物理测量原理的单一模态的缺点,例如从磁共振(MR)图像转换为计算机断层扫描(CT)图像,反之亦然;(III)去噪,以实现核医学和CT更低的注射剂量和/或辐射剂量;(IV)图像重建,以缩短MR采集时间同时保持高图像质量;(V)超分辨率,从低分辨率图像生成高分辨率图像;(VI)域适应,利用来自源域的监督标签和注释等知识应用于几乎没有或知识不足的目标域;以及(VII)结合疾病严重程度和放射基因组学的图像生成。GAN是医学和分子成像中很有前景的工具。模型架构及其应用的进展应继续值得关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1808/8246192/dbdd8a9abbf9/atm-09-09-821-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验