Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
J Am Chem Soc. 2021 Jul 28;143(29):11102-11108. doi: 10.1021/jacs.1c04606. Epub 2021 Jul 16.
Electrocatalytic hydrogen evolution reaction (HER) holds promise in the renewable clean energy scheme. Crystalline Au and Ag are, however, poor in catalyzing HER, and the ligands on colloidal nanoparticles are generally another disadvantage. Herein, we report a thiolate (SR)-protected AuAg(SR) nanocluster with low coverage of ligands and a core composed of three icosahedral () units for catalyzing HER efficiently. This trimeric structure, together with the monomeric Au(SR) and dimeric Au(SR), constitutes a unique series, providing an opportunity for revealing the correlation between the catalytic properties and the catalyst's structure. The AuAg(SR) surprisingly exhibits high catalytic activity at lower overpotentials for HER due to its low ligand-to-metal ratio, low-coordinated Au atoms and unfilled superatomic orbitals. The current density of AuAg(SR) at -0.3 V vs RHE is 3.8 and 5.1 times that of Au(SR) and Au(SR), respectively. Density functional theory (DFT) calculations reveal lower hydrogen binding energy and higher electron affinity of AuAg(SR) for an energetically feasible HER pathway. Our findings provide a new strategy for constructing highly active catalysts from inert metals by pursuing atomically precise nanoclusters and controlling their geometrical and electronic structures.
电催化析氢反应 (HER) 在可再生清洁能源方案中具有广阔的应用前景。然而,晶态的金 (Au) 和银 (Ag) 在催化 HER 方面效果不佳,胶体纳米粒子上的配体通常也是另一个缺点。在此,我们报告了一种具有低配体覆盖度和由三个二十面体 ( ) 单元组成的核的硫醇 (SR) 保护的 AuAg(SR) 纳米团簇,可高效催化 HER。这种三聚体结构,与单体 Au(SR) 和二聚体 Au(SR) 一起,构成了一个独特的系列,为揭示催化剂结构与催化性能之间的关系提供了机会。令人惊讶的是,由于 AuAg(SR) 具有低配体与金属的比例、低配位的 Au 原子和未填满的超原子轨道,因此在较低的过电势下具有高 HER 催化活性。AuAg(SR) 在 -0.3 V 相对于 RHE 的电流密度分别是 Au(SR) 和 Au(SR) 的 3.8 和 5.1 倍。密度泛函理论 (DFT) 计算表明,AuAg(SR) 具有更低的氢结合能和更高的电子亲和能,有利于 HER 途径的能量可行。我们的发现为通过追求原子精确的纳米团簇和控制其几何和电子结构,从惰性金属构建高活性催化剂提供了一种新策略。