Kiyohara Arlene C P, Torres Daniel J, Hagiwara Ayaka, Pak Jenna, Rueli Rachel H L H, Shuttleworth C William R, Bellinger Frederick P
Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States.
Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States.
Front Nutr. 2021 Jul 1;8:683154. doi: 10.3389/fnut.2021.683154. eCollection 2021.
Selenoprotein P (SELENOP1) is a selenium-rich antioxidant protein involved in extracellular transport of selenium (Se). SELENOP1 also has metal binding properties. The trace element Zinc (Zn) is a neuromodulator that can be released from synaptic terminals in the brain, primarily from a subset of glutamatergic terminals. Both Zn and Se are necessary for normal brain function. Although these ions can bind together with high affinity, the biological significance of an interaction of SELENOP1 with Zn has not been investigated. We examined changes in brain Zn in SELENOP1 knockout (KO) animals. Timm-Danscher and N-(6-methoxy-8-quinolyl)-toluenesulphonamide (TSQ) staining revealed increased levels of intracellular Zn in the SELENOP1 hippocampus compared to wildtype (WT) mice. Mass spectrometry analysis of frozen whole brain samples demonstrated that total Zn was not increased in the SELENOP1 mice, suggesting only local changes in Zn distribution. Unexpectedly, live Zn imaging of hippocampal slices with a selective extracellular fluorescent Zn indicator (FluoZin-3) showed that SELENOP1 mice have impaired Zn release in response to KCl-induced neuron depolarization. The zinc/metal storage protein metallothionein 3 (MT-3) was increased in SELENOP1 hippocampus relative to wildtype, possibly in response to an elevated Zn content. We found that depriving cultured cells of selenium resulted in increased intracellular Zn, as did inhibition of selenoprotein GPX4 but not GPX1, suggesting the increased Zn in SELENOP1 mice is due to a downregulation of antioxidant selenoproteins and subsequent release of Zn from intracellular stores. Surprisingly, we found increased tau phosphorylation in the hippocampus of SELENOP1 mice, possibly resulting from intracellular zinc changes. Our findings reveal important roles for SELENOP1 in the maintenance of synaptic Zn physiology and preventing tau hyperphosphorylation.
硒蛋白P(SELENOP1)是一种富含硒的抗氧化蛋白,参与硒(Se)的细胞外转运。SELENOP1还具有金属结合特性。微量元素锌(Zn)是一种神经调节剂,可从大脑中的突触终末释放,主要来自谷氨酸能终末的一个亚群。锌和硒都是正常脑功能所必需的。尽管这些离子可以以高亲和力结合在一起,但SELENOP1与锌相互作用的生物学意义尚未得到研究。我们研究了SELENOP1基因敲除(KO)动物脑内锌的变化。Timm-Danscher和N-(6-甲氧基-8-喹啉基)-甲苯磺酰胺(TSQ)染色显示,与野生型(WT)小鼠相比,SELENOP1基因敲除小鼠海马体中的细胞内锌水平升高。对冷冻全脑样本的质谱分析表明,SELENOP1基因敲除小鼠的总锌含量并未增加,这表明锌的分布仅发生了局部变化。出乎意料的是,用选择性细胞外荧光锌指示剂(FluoZin-3)对海马切片进行实时锌成像显示,SELENOP1基因敲除小鼠在氯化钾诱导的神经元去极化反应中锌释放受损。相对于野生型,SELENOP1基因敲除小鼠海马体中的锌/金属储存蛋白金属硫蛋白3(MT-3)增加,这可能是对锌含量升高的一种反应。我们发现,剥夺培养细胞中的硒会导致细胞内锌增加,抑制硒蛋白GPX4也会导致这种情况,但抑制GPX1则不会,这表明SELENOP1基因敲除小鼠体内锌增加是由于抗氧化硒蛋白的下调以及随后锌从细胞内储存中释放出来。令人惊讶的是,我们发现SELENOP1基因敲除小鼠海马体中的tau蛋白磷酸化增加,这可能是细胞内锌变化导致的。我们的研究结果揭示了SELENOP1在维持突触锌生理和预防tau蛋白过度磷酸化方面的重要作用。