Kim Jaeil, Hong Yoonmi, Chen Geng, Lin Weili, Yap Pew-Thian, Shen Dinggang
School of Computer Science and Engineering, Kyungpook National University, Daegu, South Korea.
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.
Comput Diffus MRI. 2019;2019:133-141. doi: 10.1007/978-3-030-05831-9_11. Epub 2019 May 3.
Diffusion MRI affords great value for studying brain development, owing to its capability in assessing brain microstructure in association with myelination. With longitudinally acquired pediatric diffusion MRI data, one can chart the temporal evolution of microstructure and white matter connectivity. However, due to subject dropouts and unsuccessful scans, longitudinal datasets are often incomplete. In this work, we introduce a graph-based deep learning approach to predict diffusion MRI data. The relationships between sampling points in spatial domain (x-space) and diffusion wave-vector domain (q-space) are harnessed jointly (x-q space) in the form of a graph. We then implement a residual learning architecture with graph convolution filtering to learn longitudinal changes of diffusion MRI data along time. We evaluate the effectiveness of the spatial and angular components in data prediction. We also investigate the longitudinal trajectories in terms of diffusion scalars computed based on the predicted datasets.
扩散磁共振成像(Diffusion MRI)在研究大脑发育方面具有巨大价值,这得益于其评估与髓鞘形成相关的脑微结构的能力。利用纵向获取的儿科扩散磁共振成像数据,可以绘制微结构和白质连通性的时间演变图。然而,由于受试者退出和扫描失败,纵向数据集往往不完整。在这项工作中,我们引入了一种基于图的深度学习方法来预测扩散磁共振成像数据。空间域(x空间)和扩散波矢域(q空间)中的采样点之间的关系以图的形式联合利用(x-q空间)。然后,我们使用图卷积滤波实现了一种残差学习架构,以了解扩散磁共振成像数据随时间的纵向变化。我们评估了数据预测中空间和角度分量的有效性。我们还根据基于预测数据集计算的扩散标量研究了纵向轨迹。