Suppr超能文献

通过3D混合图变压器实现精确的微观结构估计

Towards Accurate Microstructure Estimation via 3D Hybrid Graph Transformer.

作者信息

Yang Junqing, Jiang Haotian, Tassew Tewodros, Sun Peng, Ma Jiquan, Xia Yong, Yap Pew-Thian, Chen Geng

机构信息

National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China.

School of Computer Science and Technology, Heilongjiang University, Harbin, China.

出版信息

Med Image Comput Comput Assist Interv. 2023 Oct;14227:25-34. doi: 10.1007/978-3-031-43993-3_3. Epub 2023 Oct 1.

Abstract

Deep learning has drawn increasing attention in microstructure estimation with undersampled diffusion MRI (dMRI) data. A representative method is the hybrid graph transformer (HGT), which achieves promising performance by integrating -space graph learning and -space transformer learning into a unified framework. However, this method overlooks the 3D spatial information as it relies on training with 2D slices. To address this limitation, we propose 3D hybrid graph transformer (3D-HGT), an advanced microstructure estimation model capable of making full use of 3D spatial information and angular information. To tackle the large computation burden associated with 3D -space learning, we propose an efficient -space learning model based on simplified graph neural networks. Furthermore, we propose a 3D -space learning module based on the transformer. Extensive experiments on data from the human connectome project show that our 3D-HGT outperforms state-of-the-art methods, including HGT, in both quantitative and qualitative evaluations.

摘要

深度学习在利用欠采样扩散磁共振成像(dMRI)数据进行微观结构估计方面受到了越来越多的关注。一种具有代表性的方法是混合图变压器(HGT),它通过将 - 空间图学习和 - 空间变压器学习集成到一个统一框架中,取得了不错的性能。然而,这种方法忽略了3D空间信息,因为它依赖于二维切片进行训练。为了解决这一局限性,我们提出了3D混合图变压器(3D - HGT),这是一种先进的微观结构估计模型,能够充分利用3D空间信息和角度信息。为了应对与3D - 空间学习相关的巨大计算负担,我们提出了一种基于简化图神经网络的高效 - 空间学习模型。此外,我们还提出了一种基于变压器的3D - 空间学习模块。在来自人类连接组计划的数据上进行的大量实验表明,我们的3D - HGT在定量和定性评估中均优于包括HGT在内的现有方法。

相似文献

1
Towards Accurate Microstructure Estimation via 3D Hybrid Graph Transformer.通过3D混合图变压器实现精确的微观结构估计
Med Image Comput Comput Assist Interv. 2023 Oct;14227:25-34. doi: 10.1007/978-3-031-43993-3_3. Epub 2023 Oct 1.
4
Multimodal super-resolved q-space deep learning.多模态超分辨率 q 空间深度学习。
Med Image Anal. 2021 Jul;71:102085. doi: 10.1016/j.media.2021.102085. Epub 2021 Apr 21.

本文引用的文献

1
nnFormer: Volumetric Medical Image Segmentation via a 3D Transformer.nnFormer:通过3D变压器进行体积医学图像分割
IEEE Trans Image Process. 2023;32:4036-4045. doi: 10.1109/TIP.2023.3293771. Epub 2023 Jul 19.
5
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
9
Denoising of Diffusion MRI Data via Graph Framelet Matching in x-q Space.基于 x-q 空间图框匹配的扩散磁共振数据去噪。
IEEE Trans Med Imaging. 2019 Dec;38(12):2838-2848. doi: 10.1109/TMI.2019.2915629. Epub 2019 May 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验