Yang Junqing, Jiang Haotian, Tassew Tewodros, Sun Peng, Ma Jiquan, Xia Yong, Yap Pew-Thian, Chen Geng
National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China.
School of Computer Science and Technology, Heilongjiang University, Harbin, China.
Med Image Comput Comput Assist Interv. 2023 Oct;14227:25-34. doi: 10.1007/978-3-031-43993-3_3. Epub 2023 Oct 1.
Deep learning has drawn increasing attention in microstructure estimation with undersampled diffusion MRI (dMRI) data. A representative method is the hybrid graph transformer (HGT), which achieves promising performance by integrating -space graph learning and -space transformer learning into a unified framework. However, this method overlooks the 3D spatial information as it relies on training with 2D slices. To address this limitation, we propose 3D hybrid graph transformer (3D-HGT), an advanced microstructure estimation model capable of making full use of 3D spatial information and angular information. To tackle the large computation burden associated with 3D -space learning, we propose an efficient -space learning model based on simplified graph neural networks. Furthermore, we propose a 3D -space learning module based on the transformer. Extensive experiments on data from the human connectome project show that our 3D-HGT outperforms state-of-the-art methods, including HGT, in both quantitative and qualitative evaluations.
深度学习在利用欠采样扩散磁共振成像(dMRI)数据进行微观结构估计方面受到了越来越多的关注。一种具有代表性的方法是混合图变压器(HGT),它通过将 - 空间图学习和 - 空间变压器学习集成到一个统一框架中,取得了不错的性能。然而,这种方法忽略了3D空间信息,因为它依赖于二维切片进行训练。为了解决这一局限性,我们提出了3D混合图变压器(3D - HGT),这是一种先进的微观结构估计模型,能够充分利用3D空间信息和角度信息。为了应对与3D - 空间学习相关的巨大计算负担,我们提出了一种基于简化图神经网络的高效 - 空间学习模型。此外,我们还提出了一种基于变压器的3D - 空间学习模块。在来自人类连接组计划的数据上进行的大量实验表明,我们的3D - HGT在定量和定性评估中均优于包括HGT在内的现有方法。