Dutta Nikita S, Carroll Gerard Michael, Neale Nathan R, Han Sang-Don, Al-Jassim Mowafak, Jungjohann Katherine
Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
Department of Chemistry, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea.
Microsc Microanal. 2024 Nov 4;30(5):844-852. doi: 10.1093/mam/ozae097.
Understanding structural and chemical evolution of battery materials during operation is critical to achieving safe, efficient, and long-lasting energy storage. Cryogenic electron microscopy (cryo-EM) has become a valuable tool in battery characterization, leveraging low temperatures to improve stability of sensitive materials under electron beam irradiation. However, typical cryo-EM sample preparations leave extended time between the electrochemical point of interest and ex situ freezing of samples, during which active structures may relax, degrade, or otherwise evolve. Here, we detail a method for operando freezing cryo-EM to preserve and characterize native electrode and interfacial structures that arise during battery cycling, based on an operando plunge freezer and cold sample removal process. We validate the method on multiple electrode materials and quantify and discuss the freezing rate achieved. Operando freezing cryo-EM can be used to directly visualize transient features that arise at active electrochemical interfaces, to enable deeper understanding of structural evolution and interfacial chemistry in batteries and other electrochemical systems.
了解电池材料在运行过程中的结构和化学演变对于实现安全、高效和持久的能量存储至关重要。低温电子显微镜(cryo-EM)已成为电池表征中的一种有价值的工具,利用低温来提高敏感材料在电子束照射下的稳定性。然而,典型的低温电子显微镜样品制备在感兴趣的电化学点和样品的非原位冷冻之间留出了较长时间,在此期间,活性结构可能会松弛、降解或以其他方式演变。在这里,我们详细介绍了一种用于原位冷冻低温电子显微镜的方法,该方法基于原位骤冷冷冻机和冷样品移除过程,用于保存和表征电池循环过程中出现的原生电极和界面结构。我们在多种电极材料上验证了该方法,并对实现的冷冻速率进行了量化和讨论。原位冷冻低温电子显微镜可用于直接观察活性电化学界面处出现的瞬态特征,从而更深入地了解电池和其他电化学系统中的结构演变和界面化学。