Suppr超能文献

长时间步分子动力学可能会延缓蛋白质-配体识别过程的模拟。

Long-time-step molecular dynamics can retard simulation of protein-ligand recognition process.

机构信息

Tata Institute of Fundamental Research, Hyderabad 500046, India.

Tata Institute of Fundamental Research, Hyderabad 500046, India.

出版信息

Biophys J. 2023 Mar 7;122(5):802-816. doi: 10.1016/j.bpj.2023.01.036. Epub 2023 Feb 1.

Abstract

Molecular dynamics (MD) simulation of biologically relevant processes at realistic time scale and atomistic precision is generally limited by prohibitively large computational cost, due to its restriction of using an ultrashort integration time step (1-2 fs). A popular numerical recipe to reduce the associated computational burden is adopting schemes that would allow relatively longer-time-step for MD propagation. Here, we explore the perceived potential of one of the most frequently used long-time-step protocols, namely the hydrogen mass repartitioning (HMR) approach, in alleviating the computational overhead associated with simulation of the kinetic process of protein-ligand recognition events. By repartitioning the mass of heavier atoms to their linked hydrogen atoms, HMR leverages around twofold longer time step than regular simulation, holding promise of significant performance boost. However, our probe into direct simulation of the protein-ligand recognition event, one of the computationally most challenging processes, shows that long-time-step HMR MD simulations do not necessarily translate to a computationally affordable solution. Our investigations spanning cumulative 176 μs in three independent proteins (T4 lysozyme, sensor domain of MopR, and galectin-3) show that long-time-step HMR-based MD simulations can catch the ligand in its act of recognizing the native cavity. But, as a major caveat, the ligand is found to require significantly longer time to identify buried native protein cavity in an HMR MD simulation than regular simulation, thereby defeating the purpose of its usage for performance upgrade. A molecular analysis shows that the longer time required by a ligand to recognize the protein in HMR is rooted in faster diffusion of the ligand, which reduces the survival probability of decisive on-pathway metastable intermediates, thereby slowing down the eventual recognition process at the native cavity. Together, the investigation stresses careful assessment of pitfalls of long-time-step algorithms before attempting to utilize them for higher performance for biomolecular recognition simulations.

摘要

在真实时间尺度和原子精度下,对生物学相关过程进行分子动力学(MD)模拟通常受到极大的计算成本限制,因为它限制了使用极短的积分时间步长(1-2 fs)。为了降低相关计算负担,一种常用的数值方法是采用允许 MD 传播的相对较长时间步长的方案。在这里,我们探索了最常用的长时间步协议之一,即氢质量重新分配(HMR)方法,在减轻与蛋白质-配体识别事件的动力学过程相关的计算开销方面的潜在应用。通过将较重原子的质量重新分配给它们连接的氢原子,HMR 比常规模拟使用的时间步长长两倍,有望显著提高性能。然而,我们对蛋白质-配体识别事件的直接模拟(计算上最具挑战性的过程之一)进行了研究,结果表明,长时间步长 HMR MD 模拟不一定转化为计算上可承受的解决方案。我们在三个独立蛋白质(T4 溶菌酶、MopR 的传感器结构域和半乳糖凝集素-3)中的独立研究跨越了 176 μs,结果表明,基于长时间步长 HMR 的 MD 模拟可以捕捉到配体识别天然腔的行为。但是,作为一个主要的警告,与常规模拟相比,在 HMR MD 模拟中,配体识别埋藏的天然蛋白质腔需要更长的时间,从而使它的使用目的无法实现性能提升。分子分析表明,HMR 中配体识别蛋白质所需的时间更长,原因是配体的扩散速度更快,从而降低了决定性的途径中间态的存活概率,从而减缓了最终在天然腔中的识别过程。总的来说,这项研究强调了在尝试为生物分子识别模拟提供更高性能时,必须仔细评估长时间步算法的陷阱。

相似文献

2
Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning.通过氢质量重新分配实现长时间步长分子动力学
J Chem Theory Comput. 2015 Apr 14;11(4):1864-74. doi: 10.1021/ct5010406. Epub 2015 Mar 30.
4
Accelerating Membrane Simulations with Hydrogen Mass Repartitioning.加速膜模拟的氢质量再分配。
J Chem Theory Comput. 2019 Aug 13;15(8):4673-4686. doi: 10.1021/acs.jctc.9b00160. Epub 2019 Jul 2.
7
Taming Rugged Free Energy Landscapes Using an Average Force.利用平均力驯服崎岖的自由能景观。
Acc Chem Res. 2019 Nov 19;52(11):3254-3264. doi: 10.1021/acs.accounts.9b00473. Epub 2019 Nov 4.

引用本文的文献

本文引用的文献

3
Structure and mechanism of the SGLT family of glucose transporters.SGLT 家族葡萄糖转运蛋白的结构与机制。
Nature. 2022 Jan;601(7892):274-279. doi: 10.1038/s41586-021-04211-w. Epub 2021 Dec 8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验