Dai Yunyun, Wang Yadong, Das Susobhan, Li Shisheng, Xue Hui, Mohsen Ahmadi, Sun Zhipei
Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.
International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
Nano Lett. 2021 Jul 28;21(14):6321-6327. doi: 10.1021/acs.nanolett.1c02381. Epub 2021 Jul 19.
Two-dimensional transition-metal dichalcogenide monolayers have remarkably large optical nonlinearity. However, the nonlinear optical conversion efficiency in monolayer transition-metal dichalcogenides is typically low due to small light-matter interaction length at the atomic thickness, which significantly obstructs their applications. Here, for the first time, we report broadband (up to ∼150 nm) enhancement of optical nonlinearity in monolayer MoS with plasmonic structures. Substantial enhancement of four-wave mixing is demonstrated with the enhancement factor up to three orders of magnitude for broadband frequency conversion, covering the major visible spectral region. The equivalent third-order nonlinearity of the hybrid MoS-plasmonic structure is in the order of 10 m/V, far superior (∼10-100-times larger) to the widely used conventional bulk materials (e.g., LiNbO, BBO) and nanomaterials (e.g., gold nanofilms). Such a considerable and broadband enhancement arises from the strongly confined electric field in the plasmonic structure, promising for numerous nonlinear photonic applications of two-dimensional materials.
二维过渡金属二硫属化物单层具有非常大的光学非线性。然而,由于原子厚度下光与物质的相互作用长度较短,单层过渡金属二硫属化物中的非线性光学转换效率通常较低,这严重阻碍了它们的应用。在此,我们首次报道了利用等离子体结构实现单层MoS中光学非线性的宽带(高达约150 nm)增强。对于覆盖主要可见光谱区域的宽带频率转换,四波混频得到了显著增强,增强因子高达三个数量级。MoS-等离子体混合结构的等效三阶非线性约为10 m/V,远优于广泛使用的传统块状材料(如LiNbO、BBO)和纳米材料(如金纳米薄膜)(约大10 - 100倍)。这种显著的宽带增强源于等离子体结构中强烈受限的电场,为二维材料的众多非线性光子应用带来了希望。