Shafi Abde Mayeen, Ahmed Faisal, Fernandez Henry A, Uddin Md Gius, Cui Xiaoqi, Das Susobhan, Dai Yunyun, Khayrudinov Vladislav, Yoon Hoon Hahn, Du Luojun, Sun Zhipei, Lipsanen Harri
Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo FI-02150, Finland.
QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto FI-00076, Finland.
ACS Appl Mater Interfaces. 2022 Jul 13;14(27):31140-31147. doi: 10.1021/acsami.2c07705. Epub 2022 Jun 28.
Mixed-dimensional heterostructures combine the merits of materials of different dimensions; therefore, they represent an advantageous scenario for numerous technological advances. Such an approach can be exploited to tune the physical properties of two-dimensional (2D) layered materials to create unprecedented possibilities for anisotropic and high-performance photonic and optoelectronic devices. Here, we report a new strategy to engineer the light-matter interaction and symmetry of monolayer MoS by integrating it with one-dimensional (1D) AlGaAs nanowire (NW). Our results show that the photoluminescence (PL) intensity of MoS increases strongly in the mixed-dimensional structure because of electromagnetic field confinement in the 1D high refractive index semiconducting NW. Interestingly, the 1D NW breaks the 3-fold rotational symmetry of MoS, which leads to a strong optical anisotropy of up to ∼60%. Our mixed-dimensional heterostructure-based phototransistors benefit from this and exhibit an improved optoelectronic device performance with marked anisotropic photoresponse behavior. Compared with bare MoS devices, our MoS/NW devices show ∼5 times enhanced detectivity and ∼3 times higher photoresponsivity. Our results of engineering light-matter interaction and symmetry breaking provide a simple route to induce enhanced and anisotropic functionalities in 2D materials.
混合维度异质结构结合了不同维度材料的优点;因此,它们代表了众多技术进步的有利场景。这种方法可用于调节二维(2D)层状材料的物理性质,为各向异性和高性能光子及光电器件创造前所未有的可能性。在此,我们报告一种新策略,通过将单层MoS与一维(1D)AlGaAs纳米线(NW)集成来设计光与物质的相互作用以及MoS的对称性。我们的结果表明,由于一维高折射率半导体纳米线中的电磁场限制,混合维度结构中MoS的光致发光(PL)强度大幅增加。有趣的是,一维纳米线打破了MoS的三重旋转对称性,导致高达约60%的强光光学各向异性。我们基于混合维度异质结构的光电晶体管受益于此,并表现出改进的光电器件性能以及显著的各向异性光响应行为。与裸MoS器件相比,我们的MoS/NW器件的探测率提高了约5倍,光响应度提高了约3倍。我们在光与物质相互作用设计及对称性破缺方面的结果为在二维材料中诱导增强的各向异性功能提供了一条简单途径。