Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
School of Computing, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.
PLoS Comput Biol. 2021 Jul 19;17(7):e1009185. doi: 10.1371/journal.pcbi.1009185. eCollection 2021 Jul.
Complex dendritic trees are a distinctive feature of neurons. Alterations to dendritic morphology are associated with developmental, behavioral and neurodegenerative changes. The highly-arborized PVD neuron of C. elegans serves as a model to study dendritic patterning; however, quantitative, objective and automated analyses of PVD morphology are missing. Here, we present a method for neuronal feature extraction, based on deep-learning and fitting algorithms. The extracted neuronal architecture is represented by a database of structural elements for abstracted analysis. We obtain excellent automatic tracing of PVD trees and uncover that dendritic junctions are unevenly distributed. Surprisingly, these junctions are three-way-symmetrical on average, while dendritic processes are arranged orthogonally. We quantify the effect of mutation in git-1, a regulator of dendritic spine formation, on PVD morphology and discover a localized reduction in junctions. Our findings shed new light on PVD architecture, demonstrating the effectiveness of our objective analyses of dendritic morphology and suggest molecular control mechanisms.
复杂的树突是神经元的一个显著特征。树突形态的改变与发育、行为和神经退行性变化有关。秀丽隐杆线虫的高度分枝的 PVD 神经元可作为研究树突模式的模型;然而,PVD 形态的定量、客观和自动分析仍然缺失。在这里,我们提出了一种基于深度学习和拟合算法的神经元特征提取方法。提取的神经元结构由结构元素数据库表示,用于抽象分析。我们实现了对 PVD 树的出色自动追踪,并揭示了树突结的不均匀分布。令人惊讶的是,这些结在平均水平上是三向对称的,而树突过程则呈正交排列。我们量化了调节树突棘形成的 git-1 突变对 PVD 形态的影响,发现结的局部减少。我们的发现为 PVD 结构提供了新的视角,展示了我们对树突形态的客观分析的有效性,并提出了分子控制机制。