Suppr超能文献

基于忽略的听觉探针和空间协方差的脑力负荷分类。

Mental workload classification based on ignored auditory probes and spatial covariance.

机构信息

Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai, People's Republic of China.

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China.

出版信息

J Neural Eng. 2021 Aug 13;18(4). doi: 10.1088/1741-2552/ac15e5.

Abstract

Estimation of mental workload (MWL) levels by electroencephalography (EEG)-based mental state monitoring systems has been widely explored. Using event-related potentials (ERPs), elicited by ignored auditory probes, minimizes intrusiveness and has shown high performance for estimating MWL level when tested in laboratory situations. However, when facing real-world applications, the characteristics of ERP waveforms, like latency and amplitude, are often affected by noise, which leads to a decrease in classification performance. One approach to mitigating this is using spatial covariance, which is less sensitive to latency and amplitude distortion. In this study, we used ignored auditory probes in a single-stimulus paradigm and tested Riemannian processed covariance-based features for MWL level estimation in a realistic flight-control task.We recorded EEG data with an eight-channel system from participants while they performed a simulated drone-control task and manipulated MWL levels (high and low) by task difficulty. We compared support vector machine classification performance based on frequency band power features versus features generated via the Riemannian log map operator from spatial covariance matrices. We also compared accuracy of using data segmented as auditory ERPs versus non-ERPs, for which data windows did not overlap with the ERPs.Classification accuracy of both types of features showed no significant difference between ERPs and non-ERPs. When we ignore auditory stimuli to perform continuous decoding, covariance-based features in the gamma band had area under the receiver-operating-characteristic curve (AUC) of 0.883, which was significantly higher than band power features (AUC = 0.749).This study demonstrates that Riemannian-processed covariance features are viable for MWL classification under a realistic experimental scenario.

摘要

基于脑电图(EEG)的精神状态监测系统来估计精神工作负荷(MWL)水平已经得到了广泛的探索。使用忽略听觉探针诱发的事件相关电位(ERPs)可以最大程度地减少干扰,并且在实验室环境下进行测试时表现出了对 MWL 水平进行估计的高性能。然而,当面对实际应用时,ERP 波形的特征(如潜伏期和振幅)通常会受到噪声的影响,从而导致分类性能下降。一种减轻这种影响的方法是使用空间协方差,它对潜伏期和振幅失真的敏感性较低。在这项研究中,我们在单一刺激范式中使用了忽略听觉探针,并在现实的飞行控制任务中测试了基于瑞利处理协方差的特征,用于估计 MWL 水平。我们使用八通道系统记录了参与者在执行模拟无人机控制任务时的 EEG 数据,并通过任务难度来操纵 MWL 水平(高和低)。我们比较了基于频带功率特征的支持向量机分类性能与通过瑞利对数映射算子从空间协方差矩阵生成的特征。我们还比较了使用与听觉 ERPs 不重叠的数据窗口的 ERPs 和非 ERPs 进行分段数据的准确性。两种类型的特征的分类准确性在 ERPs 和非 ERPs 之间没有显著差异。当我们忽略听觉刺激来执行连续解码时,伽马波段的基于协方差的特征的接收器操作特征曲线(ROC)下面积(AUC)为 0.883,明显高于频带功率特征(AUC = 0.749)。这项研究表明,在现实的实验场景下,瑞利处理的协方差特征可用于 MWL 分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验