Suppr超能文献

一种基于迁移学习的用于脑电信号分类的胶囊决策神经网络。

A Capsule Decision Neural Network Based on Transfer Learning for EEG Signal Classification.

作者信息

Zhang Wei, Tang Xianlun, Dang Xiaoyuan, Wang Mengzhou

机构信息

School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

School of General Education, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China.

出版信息

Biomimetics (Basel). 2025 Apr 4;10(4):225. doi: 10.3390/biomimetics10040225.

Abstract

Transfer learning is the act of using the data or knowledge in a problem to help solve different but related problems. In a brain computer interface (BCI), it is important to deal with individual differences between topics and/or tasks. A kind of capsule decision neural network (CDNN) based on transfer learning is proposed. In order to solve the problem of feature distortion caused by EEG feature extraction algorithm, a deep capsule decision network was constructed. The architecture includes multiple primary capsules to form a hidden layer, and the connection between the advanced capsule and the primary capsule is determined by the neural decision routing algorithm. Unlike the dynamic routing algorithm that iteratively calculates the similarity between primary capsules and advanced capsules, the neural decision network computes the relationship between each capsule in the deep and shallow hidden layers in a probabilistic manner. At the same time, the distribution of the EEG covariance matrix is aligned in Riemann space, and the regional adaptive method is further introduced to improve the independent decoding ability of the capsule decision neural network for the subject's EEG signals. Experiments on two motor imagery EEG datasets show that CDNN outperforms several of the most advanced transfer learning methods.

摘要

迁移学习是指利用一个问题中的数据或知识来帮助解决不同但相关问题的行为。在脑机接口(BCI)中,处理不同主题和/或任务之间的个体差异非常重要。本文提出了一种基于迁移学习的胶囊决策神经网络(CDNN)。为了解决脑电图(EEG)特征提取算法导致的特征失真问题,构建了一个深度胶囊决策网络。该架构包括多个初级胶囊组成一个隐藏层,高级胶囊与初级胶囊之间的连接由神经决策路由算法确定。与迭代计算初级胶囊和高级胶囊之间相似度的动态路由算法不同,神经决策网络以概率方式计算深度和浅层隐藏层中每个胶囊之间的关系。同时,在黎曼空间中对齐EEG协方差矩阵的分布,并进一步引入区域自适应方法,以提高胶囊决策神经网络对受试者EEG信号的独立解码能力。在两个运动想象EEG数据集上的实验表明,CDNN优于几种最先进的迁移学习方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fc5/12024946/41e7c391b86b/biomimetics-10-00225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验