Suppr超能文献

利福昔明是一种有潜力针对 SARS-CoV-2 M 的抑制剂。

Leucoefdin a potential inhibitor against SARS CoV-2 M.

机构信息

Department of Pharmacology, Institute of Medical Sciences, Varanasi, India.

School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India.

出版信息

J Biomol Struct Dyn. 2021 Aug;39(12):4427-4432. doi: 10.1080/07391102.2020.1777903. Epub 2020 Jun 17.

Abstract

Leucoefdin an important constituent of various fruits such as banana, raspberry, etc. was explored to target M protease of SARS Co-V 2. Ligand was found to bind at active site of M with large negative binding energies in molecular docking and simulation study. The docking results showed that Leucoefdin interacted with the M by forming hydrogen bonds, at Leu 141, His163, His 164, and Glu 166. Other non-bonded interactions were seen at Met49, Pro52, Tyr54, Phe140, Leu141, Cys145 and Met165. Results of Leucoefdin was in coherence with the recently reported M protease-inhibitor complex. It even displayed better binding energies (kcal/mol) in HTVS (-6.28), SP (-7.28), XP (-9.29) and MMGBSA (-44.71) as compared to the reference ligand [HTVS (-4.87), SP (-6.79), XP (-5.75) and MMGBSA (-47.76)]. Leucoefdin-M complex on molecular dynamic simulation showed initial fluctuations in RMSD plot for a certain period and attained equilibrium which remained stable during entire simulation for 150 ns. RMSF of protein showed less secondary structure fluctuations and a greater number of H-bond formation with Leucoefdin during 150 ns simulation. Post simulation MMGBSA analysis showed binding energy of -45.98 Kcal/mol. These findings indicated the potential of Leucoefdin as lead compound in R&D for drug discovery and development against SARS CoV-2.Communicated by Ramaswamy H. Sarma.

摘要

白果酚是香蕉、覆盆子等各种水果的重要成分,被探索用于针对 SARS Co-V 2 的 M 蛋白酶。在分子对接和模拟研究中,配体被发现与 M 的活性位点结合,具有较大的负结合能。对接结果表明,白果酚通过与 Leu141、His163、His164 和 Glu166 形成氢键与 M 相互作用。还观察到其他非键相互作用位于 Met49、Pro52、Tyr54、Phe140、Leu141、Cys145 和 Met165。白果酚的结果与最近报道的 M 蛋白酶抑制剂复合物一致。它甚至在 HTVS(-6.28)、SP(-7.28)、XP(-9.29)和 MMGBSA(-44.71)中的结合能(kcal/mol)表现更好,而参考配体为 HTVS(-4.87)、SP(-6.79)、XP(-5.75)和 MMGBSA(-47.76)。在分子动力学模拟中,白果酚-M 复合物的 RMSD 图在一定时间内显示出初始波动,并在整个 150ns 模拟过程中达到平衡并保持稳定。蛋白质的 RMSF 显示出较少的二级结构波动和在 150ns 模拟过程中与白果酚形成更多的氢键。模拟后 MMGBSA 分析表明结合能为-45.98Kcal/mol。这些发现表明白果酚作为针对 SARS CoV-2 的药物研发的先导化合物具有潜力。由 Ramaswamy H. Sarma 传达。

相似文献

1
Leucoefdin a potential inhibitor against SARS CoV-2 M.
J Biomol Struct Dyn. 2021 Aug;39(12):4427-4432. doi: 10.1080/07391102.2020.1777903. Epub 2020 Jun 17.
2
4
Virtual screening of natural products inspired in-house library to discover potential lead molecules against the SARS-CoV-2 main protease.
J Biomol Struct Dyn. 2023 Mar;41(5):2033-2045. doi: 10.1080/07391102.2022.2027271. Epub 2022 Jan 19.
5
Identification of Natural Inhibitors Against SARS-CoV-2 Drugable Targets Using Molecular Docking, Molecular Dynamics Simulation, and MM-PBSA Approach.
Front Cell Infect Microbiol. 2021 Aug 12;11:730288. doi: 10.3389/fcimb.2021.730288. eCollection 2021.
7
Identification of bioactive molecule from (Ashwagandha) as SARS-CoV-2 main protease inhibitor.
J Biomol Struct Dyn. 2021 Sep;39(15):5668-5681. doi: 10.1080/07391102.2020.1790425. Epub 2020 Jul 8.
8
Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2.
J Biomol Struct Dyn. 2021 Jun;39(9):3387-3395. doi: 10.1080/07391102.2020.1764392. Epub 2020 May 15.
9
Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: a molecular docking-simulation base assessment.
J Biomol Struct Dyn. 2022 Sep;40(14):6463-6476. doi: 10.1080/07391102.2021.1885495. Epub 2021 Feb 15.

引用本文的文献

3
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.
Chem Rev. 2022 Jul 13;122(13):11287-11368. doi: 10.1021/acs.chemrev.1c00965. Epub 2022 May 20.
4
Exploring diet associations with Covid-19 and other diseases: a Network Analysis-based approach.
Med Biol Eng Comput. 2022 Apr;60(4):991-1013. doi: 10.1007/s11517-022-02505-3. Epub 2022 Feb 16.
5
Effectiveness of Natural Antioxidants against SARS-CoV-2? Insights from the World.
Antibiotics (Basel). 2021 Aug 20;10(8):1011. doi: 10.3390/antibiotics10081011.
6
Potentials of Antitussive Traditional Persian Functional Foods for COVID-19 Therapy.
Front Pharmacol. 2021 Jul 16;12:624006. doi: 10.3389/fphar.2021.624006. eCollection 2021.
7
Screening of world approved drugs against highly dynamical spike glycoprotein of SARS-CoV-2 using CaverDock and machine learning.
Comput Struct Biotechnol J. 2021;19:3187-3197. doi: 10.1016/j.csbj.2021.05.043. Epub 2021 May 26.
8
Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19.
Front Pharmacol. 2021 May 12;12:652335. doi: 10.3389/fphar.2021.652335. eCollection 2021.
9
Computational analysis of dynamic allostery and control in the SARS-CoV-2 main protease.
J R Soc Interface. 2021 Jan;18(174):20200591. doi: 10.1098/rsif.2020.0591. Epub 2021 Jan 6.
10
Fisetin 8-C-glucoside as entry inhibitor in SARS CoV-2 infection: molecular modelling study.
J Biomol Struct Dyn. 2022 Jul;40(11):5128-5137. doi: 10.1080/07391102.2020.1868335. Epub 2020 Dec 31.

本文引用的文献

1
SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an perspective.
J Biomol Struct Dyn. 2021 Jun;39(9):3204-3212. doi: 10.1080/07391102.2020.1761882. Epub 2020 May 6.
2
Structure of M from SARS-CoV-2 and discovery of its inhibitors.
Nature. 2020 Jun;582(7811):289-293. doi: 10.1038/s41586-020-2223-y. Epub 2020 Apr 9.
3
In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain).
J Biomol Struct Dyn. 2021 May;39(8):2724-2732. doi: 10.1080/07391102.2020.1753580. Epub 2020 May 18.
4
Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.
Cell Res. 2020 Mar;30(3):269-271. doi: 10.1038/s41422-020-0282-0. Epub 2020 Feb 4.
5
A new coronavirus associated with human respiratory disease in China.
Nature. 2020 Mar;579(7798):265-269. doi: 10.1038/s41586-020-2008-3. Epub 2020 Feb 3.
7
Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.
J Chem Theory Comput. 2010 May 11;6(5):1509-19. doi: 10.1021/ct900587b. Epub 2010 Apr 14.
8
OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.
J Chem Theory Comput. 2016 Jan 12;12(1):281-96. doi: 10.1021/acs.jctc.5b00864. Epub 2015 Dec 1.
10
Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments.
J Comput Aided Mol Des. 2013 Mar;27(3):221-34. doi: 10.1007/s10822-013-9644-8. Epub 2013 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验