Suppr超能文献

多变量机器学习分析在基于静息态功能连接的重性抑郁障碍识别中的应用:一项多中心研究。

Multivariate Machine Learning Analyses in Identification of Major Depressive Disorder Using Resting-State Functional Connectivity: A Multicentral Study.

机构信息

Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China.

School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, Jiangsu 211189, China.

出版信息

ACS Chem Neurosci. 2021 Aug 4;12(15):2878-2886. doi: 10.1021/acschemneuro.1c00256. Epub 2021 Jul 20.

Abstract

Diagnosis of major depressive disorder (MDD) using resting-state functional connectivity (rs-FC) data faces many challenges, such as the high dimensionality, small samples, and individual difference. To assess the clinical value of rs-FC in MDD and identify the potential rs-FC machine learning (ML) model for the individualized diagnosis of MDD, based on the rs-FC data, a progressive three-step ML analysis was performed, including six different ML algorithms and two dimension reduction methods, to investigate the classification performance of ML model in a multicentral, large sample dataset [1021 MDD patients and 1100 normal controls (NCs)]. Furthermore, the linear least-squares fitted regression model was used to assess the relationships between rs-FC features and the severity of clinical symptoms in MDD patients. Among used ML methods, the rs-FC model constructed by the eXtreme Gradient Boosting (XGBoost) method showed the optimal classification performance for distinguishing MDD patients from NCs at the individual level (accuracy = 0.728, sensitivity = 0.720, specificity = 0.739, area under the curve = 0.831). Meanwhile, identified rs-FCs by the XGBoost model were primarily distributed within and between the default mode network, limbic network, and visual network. More importantly, the 17 item individual Hamilton Depression Scale scores of MDD patients can be accurately predicted using rs-FC features identified by the XGBoost model (adjusted = 0.180, root mean squared error = 0.946). The XGBoost model using rs-FCs showed the optimal classification performance between MDD patients and HCs, with the good generalization and neuroscientifical interpretability.

摘要

使用静息态功能连接 (rs-FC) 数据诊断重度抑郁症 (MDD) 面临许多挑战,例如高维性、小样本和个体差异。为了评估 rs-FC 在 MDD 中的临床价值,并确定潜在的 rs-FC 机器学习 (ML) 模型用于 MDD 的个体化诊断,我们基于 rs-FC 数据进行了渐进式三步 ML 分析,包括六种不同的 ML 算法和两种降维方法,以研究 ML 模型在多中心、大样本数据集 [1021 名 MDD 患者和 1100 名正常对照 (NCs)] 中的分类性能。此外,我们还使用线性最小二乘拟合回归模型评估了 rs-FC 特征与 MDD 患者临床症状严重程度之间的关系。在使用的 ML 方法中,基于极端梯度提升 (XGBoost) 方法构建的 rs-FC 模型在个体水平上区分 MDD 患者和 NCs 的分类性能最佳 (准确率 = 0.728、敏感度 = 0.720、特异性 = 0.739、曲线下面积 = 0.831)。同时,XGBoost 模型识别的 rs-FCs 主要分布在默认模式网络、边缘网络和视觉网络内和之间。更重要的是,我们可以使用 XGBoost 模型识别的 rs-FC 特征准确预测 MDD 患者的 17 项个体汉密尔顿抑郁量表评分 (调整后的 = 0.180,均方根误差 = 0.946)。XGBoost 模型使用 rs-FCs 在 MDD 患者和 HC 之间显示出最佳的分类性能,具有良好的泛化能力和神经科学可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验