Suppr超能文献

通过多视角特征增强实现无源协作域适应用于功能磁共振成像分析

Source-free collaborative domain adaptation via multi-perspective feature enrichment for functional MRI analysis.

作者信息

Fang Yuqi, Wu Jinjian, Wang Qianqian, Qiu Shijun, Bozoki Andrea, Liu Mingxia

机构信息

Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510130, China.

出版信息

Pattern Recognit. 2025 Jan;157. doi: 10.1016/j.patcog.2024.110912. Epub 2024 Aug 22.

Abstract

Resting-state functional MRI (rs-fMRI) is increasingly employed in multi-site research to analyze neurological disorders, but there exists cross-site/domain data heterogeneity caused by site effects such as differences in scanners/protocols. Existing domain adaptation methods that reduce fMRI heterogeneity generally require accessing source domain data, which is challenging due to privacy concerns and/or data storage burdens. To this end, we propose a source-free collaborative domain adaptation (SCDA) framework using only a pretrained source model and unlabeled target data. Specifically, a multi-perspective feature enrichment method (MFE) is developed to dynamically exploit target fMRIs from multiple views. To facilitate efficient source-to-target knowledge transfer without accessing source data, we initialize MFE using parameters of a pretrained source model. We also introduce an unsupervised pretraining strategy using 3,806 unlabeled fMRIs from three large-scale auxiliary databases. Experimental results on three public and one private datasets show the efficacy of our method in cross-scanner and cross-study prediction.

摘要

静息态功能磁共振成像(rs-fMRI)越来越多地用于多中心研究以分析神经疾病,但由于扫描仪/协议差异等场所效应,存在跨场所/领域的数据异质性。现有的减少功能磁共振成像异质性的领域适应方法通常需要访问源域数据,由于隐私问题和/或数据存储负担,这具有挑战性。为此,我们提出了一种仅使用预训练源模型和未标记目标数据的无源协作域适应(SCDA)框架。具体而言,开发了一种多视角特征增强方法(MFE)以从多个视图动态利用目标功能磁共振成像。为了在不访问源数据的情况下促进从源到目标的高效知识转移,我们使用预训练源模型的参数初始化MFE。我们还引入了一种无监督预训练策略,使用来自三个大规模辅助数据库的3806个未标记功能磁共振成像。在三个公共数据集和一个私有数据集上的实验结果表明了我们的方法在跨扫描仪和跨研究预测中的有效性。

相似文献

9
10
Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation.用于脑肿瘤分割的无监督黑箱模型域适应
Front Neurosci. 2022 Jun 2;16:837646. doi: 10.3389/fnins.2022.837646. eCollection 2022.

本文引用的文献

5
Gradient Matching Federated Domain Adaptation for Brain Image Classification.基于梯度匹配的联邦域自适应在脑影像分类中的应用。
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7405-7419. doi: 10.1109/TNNLS.2022.3223144. Epub 2024 Jun 3.
6
Self-Supervised Autoregressive Domain Adaptation for Time Series Data.用于时间序列数据的自监督自回归域适应
IEEE Trans Neural Netw Learn Syst. 2022 Jun 23;PP. doi: 10.1109/TNNLS.2022.3183252.
10
Autism spectrum disorder.自闭症谱系障碍。
Nat Rev Dis Primers. 2020 Jan 16;6(1):5. doi: 10.1038/s41572-019-0138-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验