Suppr超能文献

用于组织工程的新型生物打印技术 - 打印工艺和生物墨水成分对细胞行为和血管生成的影响。

FRESH bioprinting technology for tissue engineering - the influence of printing process and bioink composition on cell behavior and vascularization.

机构信息

Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany.

Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands.

出版信息

J Appl Biomater Funct Mater. 2021 Jan-Dec;19:22808000211028808. doi: 10.1177/22808000211028808.

Abstract

The rapid and tailored biofabrication of natural materials is of high interest for the field of tissue engineering and regenerative medicine. Scaffolds require both high biocompatibility and tissue-dependent mechanical strength to function as basis for tissue-engineered implants. Thus, natural hydrogels such as fibrin are promising but their rapid biofabrication remains challenging. Printing of low viscosity and slow polymerizing solutions with good spatial resolution can be achieved by freeform reversible embedding of suspended hydrogels (FRESH) bioprinting of cell-laden natural hydrogels. In this study, fibrin and hyaluronic acid were used as single components as well as blended ink mixtures for the FRESH bioprinting. Rheometry revealed that single materials were less viscous than the blended bioink showing higher values for viscosity over a shear rate of 10-1000 s. While fibrin showed viscosities between 0.1624 and 0.0017 Pa·s, the blended ink containing fibrin and hyaluronic acid were found to be in a range of 0.1-1 Pa·s. In 3D vascularization assays, formation of vascular structures within the printed constructs was investigated indicating that the printing process did not harm cells and allowed formation of vasculature comparable to moulded control samples. Best values for vascularization were achieved in bioinks consisting of 1.0% fibrin-0.5% hyaluronic acid. The vascular structure area and length were three times higher compared to other tested bioinks, and structure volume as well as number of branches revealed almost four times higher values. In this study, we combined the benefits of the FRESH printing technique with in vitro vascularization, showing that it is possible to achieve a mechanically stable small-scale hydrogel construct incorporating vascular network formation.

摘要

快速定制化的天然材料生物制造对于组织工程和再生医学领域具有重要意义。支架需要具有高度的生物相容性和组织依赖性机械强度,才能作为组织工程植入物的基础。因此,天然水凝胶(如纤维蛋白)具有很大的应用前景,但它们的快速生物制造仍然具有挑战性。自由形态可逆嵌入悬浮水凝胶(FRESH)生物打印可以实现低粘度和聚合速度较慢的溶液的打印,具有良好的空间分辨率,可以打印细胞负载的天然水凝胶。在本研究中,纤维蛋白和透明质酸被用作单一成分以及混合的墨水混合物用于 FRESH 生物打印。流变学研究表明,单一材料的粘度低于混合生物墨水,在剪切速率为 10-1000 s 时表现出更高的粘度值。纤维蛋白的粘度在 0.1624 到 0.0017 Pa·s 之间,而含有纤维蛋白和透明质酸的混合墨水的粘度在 0.1 到 1 Pa·s 之间。在 3D 血管化实验中,研究了打印结构内血管结构的形成,表明打印过程不会损害细胞,并允许形成与模具对照样品相当的血管结构。在由 1.0%纤维蛋白-0.5%透明质酸组成的生物墨水中,获得了最佳的血管化效果。与其他测试的生物墨水相比,血管结构的面积和长度增加了三倍,结构体积和分支数量增加了近四倍。在本研究中,我们将 FRESH 打印技术与体外血管化相结合,证明了实现具有机械稳定性的小型水凝胶结构并包含血管网络形成是可能的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验