Suppr超能文献

通过高斯过程回归及其稀疏变体桥接半经验和从头算QM/MM势以进行自由能模拟

Bridging semiempirical and ab initio QM/MM potentials by Gaussian process regression and its sparse variants for free energy simulation.

作者信息

Snyder Ryan, Kim Bryant, Pan Xiaoliang, Shao Yihan, Pu Jingzhi

机构信息

Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, USA.

Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, Oklahoma 73019, USA.

出版信息

J Chem Phys. 2023 Aug 7;159(5). doi: 10.1063/5.0156327.

Abstract

Free energy simulations that employ combined quantum mechanical and molecular mechanical (QM/MM) potentials at ab initio QM (AI) levels are computationally highly demanding. Here, we present a machine-learning-facilitated approach for obtaining AI/MM-quality free energy profiles at the cost of efficient semiempirical QM/MM (SE/MM) methods. Specifically, we use Gaussian process regression (GPR) to learn the potential energy corrections needed for an SE/MM level to match an AI/MM target along the minimum free energy path (MFEP). Force modification using gradients of the GPR potential allows us to improve configurational sampling and update the MFEP. To adaptively train our model, we further employ the sparse variational GP (SVGP) and streaming sparse GPR (SSGPR) methods, which efficiently incorporate previous sample information without significantly increasing the training data size. We applied the QM-(SS)GPR/MM method to the solution-phase SN2 Menshutkin reaction, NH3+CH3Cl→CH3NH3++Cl-, using AM1/MM and B3LYP/6-31+G(d,p)/MM as the base and target levels, respectively. For 4000 configurations sampled along the MFEP, the iteratively optimized AM1-SSGPR-4/MM model reduces the energy error in AM1/MM from 18.2 to 4.4 kcal/mol. Although not explicitly fitting forces, our method also reduces the key internal force errors from 25.5 to 11.1 kcal/mol/Å and from 30.2 to 10.3 kcal/mol/Å for the N-C and C-Cl bonds, respectively. Compared to the uncorrected simulations, the AM1-SSGPR-4/MM method lowers the predicted free energy barrier from 28.7 to 11.7 kcal/mol and decreases the reaction free energy from -12.4 to -41.9 kcal/mol, bringing these results into closer agreement with their AI/MM and experimental benchmarks.

摘要

在从头算量子力学(AI)水平上采用组合量子力学和分子力学(QM/MM)势的自由能模拟在计算上要求很高。在这里,我们提出了一种机器学习辅助方法,以高效半经验QM/MM(SE/MM)方法的成本获得AI/MM质量的自由能分布。具体来说,我们使用高斯过程回归(GPR)来学习SE/MM水平沿着最小自由能路径(MFEP)与AI/MM目标匹配所需的势能校正。使用GPR势的梯度进行力修正使我们能够改进构型采样并更新MFEP。为了自适应训练我们的模型,我们进一步采用了稀疏变分高斯过程(SVGP)和流稀疏GPR(SSGPR)方法,它们有效地合并了先前的样本信息,而不会显著增加训练数据大小。我们将QM-(SS)GPR/MM方法应用于溶液相SN2门舒特金反应,NH3+CH3Cl→CH3NH3++Cl-,分别使用AM1/MM和B3LYP/6-31+G(d,p)/MM作为基础水平和目标水平。对于沿MFEP采样的4000个构型,迭代优化的AM1-SSGPR-4/MM模型将AM1/MM中的能量误差从18.2降低到4.4 kcal/mol。尽管没有明确拟合力,但我们的方法也分别将N-C和C-Cl键的关键内力误差从25.5降低到11.1 kcal/mol/Å和从30.2降低到10.3 kcal/mol/Å。与未校正的模拟相比,AM1-SSGPR-4/MM方法将预测的自由能垒从28.7降低到11.7 kcal/mol,并将反应自由能从-12.4降低到-41.9 kcal/mol,使这些结果与它们的AI/MM和实验基准更接近一致。

相似文献

4
Doubly Polarized QM/MM with Machine Learning Chaperone Polarizability.双重极化 QM/MM 与机器学习伴护极化率。
J Chem Theory Comput. 2021 Dec 14;17(12):7682-7695. doi: 10.1021/acs.jctc.1c00567. Epub 2021 Nov 1.
5

引用本文的文献

4
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.CHARMM 45:可访问性、功能和速度的增强。
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
7
Surface-Accelerated String Method for Locating Minimum Free Energy Paths.用于定位最小自由能路径的表面加速弦方法
J Chem Theory Comput. 2024 Mar 12;20(5):2058-2073. doi: 10.1021/acs.jctc.3c01401. Epub 2024 Feb 17.

本文引用的文献

6
Choosing the right molecular machine learning potential.选择合适的分子机器学习势函数。
Chem Sci. 2021 Sep 15;12(43):14396-14413. doi: 10.1039/d1sc03564a. eCollection 2021 Nov 10.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验