College of Life Sciences, Capital Normal University, Beijing, 100048, China.
National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
BMC Plant Biol. 2018 Aug 15;18(1):171. doi: 10.1186/s12870-018-1383-5.
Root systems play important roles in crop growth and stress responses. Although genetic mechanism of root traits in maize (Zea mays L.) has been investigated in different mapping populations, root traits have rarely been utilized in breeding programs. Elucidation of the genetic basis of maize root traits and, more importantly, their connection to other agronomic trait(s), such as grain yield, may facilitate root trait manipulation and maize germplasm improvement. In this study, we analyzed genome-wide genetic loci for maize seedling root traits at three time-points after seed germination to identify chromosomal regions responsible for both seedling root traits and other agronomic traits in a recombinant inbred line (RIL) population (Zong3 × Yu87-1).
Eight seedling root traits were examined at 4, 9, and 14 days after seed germination, and thirty-six putative quantitative trait loci (QTLs), accounting for 9.0-23.2% of the phenotypic variation in root traits, were detected. Co-localization of root trait QTLs was observed at, but not between, the three time-points. We identified strong or moderate correlations between root traits controlled by each co-localized QTL region. Furthermore, we identified an overlap in the QTL locations of seedling root traits examined here and six other traits reported previously in the same RIL population, including grain yield-related traits, plant height-related traits, and traits in relation to stress responses. Maize chromosomal bins 1.02-1.03, 1.07, 2.06-2.07, 5.05, 7.02-7.03, 9.04, and 10.06 were identified QTL hotspots for three or four more traits in addition to seedling root traits.
Our identification of co-localization of root trait QTLs at, but not between, each of the three time-points suggests that maize seedling root traits are regulated by different sets of pleiotropic-effect QTLs at different developmental stages. Furthermore, the identification of QTL hotspots suggests the genetic association of seedling root traits with several other traits and reveals maize chromosomal regions valuable for marker-assisted selection to improve root systems and other agronomic traits simultaneously.
根系在作物生长和胁迫响应中起着重要作用。尽管已经在不同的作图群体中研究了玉米(Zea mays L.)根系性状的遗传机制,但根系性状在育种计划中很少被利用。阐明玉米根系性状的遗传基础,更重要的是,阐明其与其他农艺性状(如籽粒产量)的关系,可能有助于根系性状的操纵和玉米种质的改良。在这项研究中,我们分析了萌发后三个时间点玉米幼苗根系性状的全基因组遗传位点,以鉴定负责重组自交系(RIL)群体(Zong3 × Yu87-1)中幼苗根系性状和其他农艺性状的染色体区域。
在种子萌发后 4、9 和 14 天检查了 8 个幼苗根系性状,检测到 36 个可能的数量性状位点(QTLs),占根系性状表型变异的 9.0-23.2%。在三个时间点上观察到根系性状 QTL 共定位,但不在 QTL 之间。我们鉴定了由每个共定位 QTL 区域控制的根系性状之间的强或中度相关性。此外,我们鉴定了在此处检查的幼苗根系性状的 QTL 位置与同一 RIL 群体中以前报道的六个其他性状的 QTL 位置重叠,包括与籽粒产量相关的性状、株高相关的性状和与胁迫反应相关的性状。除了幼苗根系性状外,玉米染色体 bin1.02-1.03、1.07、2.06-2.07、5.05、7.02-7.03、9.04 和 10.06 被鉴定为三个或四个以上性状的 QTL 热点。
我们在三个时间点中的每一个时间点上鉴定到根系性状 QTL 的共定位,但不在 QTL 之间,这表明玉米幼苗根系性状是由不同发育阶段不同多效性 QTL 调控的。此外,QTL 热点的鉴定表明了幼苗根系性状与其他几个性状的遗传关联,并揭示了对标记辅助选择有价值的玉米染色体区域,以同时改良根系系统和其他农艺性状。