Suppr超能文献

硫酸盐通过不同方式刺激但不被各种厌氧甲烷营养古菌呼吸。

Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea.

机构信息

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.

Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Australia.

出版信息

ISME J. 2022 Jan;16(1):168-177. doi: 10.1038/s41396-021-01047-0. Epub 2021 Jul 20.

Abstract

Sulfate-coupled anaerobic oxidation of methane (AOM) is a major methane sink in marine sediments. Multiple lineages of anaerobic methanotrophic archaea (ANME) often coexist in sediments and catalyze this process syntrophically with sulfate-reducing bacteria (SRB), but the potential differences in ANME ecophysiology and mechanisms of syntrophy remain unresolved. A humic acid analog, anthraquinone 2,6-disulfonate (AQDS), could decouple archaeal methanotrophy from bacterial sulfate reduction and serve as the terminal electron acceptor for AOM (AQDS-coupled AOM). Here in sediment microcosm experiments, we examined variations in physiological response between two co-occurring ANME-2 families (ANME-2a and ANME-2c) and tested the hypothesis of sulfate respiration by ANME-2. Sulfate concentrations as low as 100 µM increased AQDS-coupled AOM nearly 2-fold matching the rates of sulfate-coupled AOM. However, the SRB partners remained inactive in microcosms with sulfate and AQDS and neither ANME-2 families respired sulfate, as shown by their cellular sulfur contents and anabolic activities measured using nanoscale secondary ion mass spectrometry. ANME-2a anabolic activity was significantly higher than ANME-2c, suggesting that ANME-2a was primarily responsible for the observed sulfate stimulation of AQDS-coupled AOM. Comparative transcriptomics showed significant upregulation of ANME-2a transcripts linked to multiple ABC transporters and downregulation of central carbon metabolism during AQDS-coupled AOM compared to sulfate-coupled AOM. Surprisingly, genes involved in sulfur anabolism were not differentially expressed during AQDS-coupled AOM with and without sulfate amendment. Collectively, this data indicates that ANME-2 archaea are incapable of respiring sulfate, but sulfate availability differentially stimulates the growth and AOM activity of different ANME lineages.

摘要

硫酸盐耦合厌氧甲烷氧化 (AOM) 是海洋沉积物中甲烷的主要汇。多种厌氧甲烷营养古菌 (ANME) 谱系通常在沉积物中共存,并与硫酸盐还原菌 (SRB) 协同催化这一过程,但 ANME 生理生态学和共生机制的潜在差异仍未得到解决。腐殖酸类似物蒽醌-2,6-二磺酸钠 (AQDS) 可以将古菌甲烷营养作用与细菌硫酸盐还原作用解耦,并作为 AOM 的末端电子受体 (AQDS 耦合 AOM)。在此沉积物微宇宙实验中,我们研究了两种共存的 ANME-2 家族 (ANME-2a 和 ANME-2c) 之间生理反应的变化,并检验了 ANME-2 进行硫酸盐呼吸的假设。硫酸盐浓度低至 100µM 时,AQDS 耦合 AOM 的速率增加近 2 倍,与硫酸盐耦合 AOM 的速率相匹配。然而,在含有硫酸盐和 AQDS 的微宇宙中,SRB 伙伴仍然没有活动,并且两种 ANME-2 家族都没有呼吸硫酸盐,这可以通过使用纳米二次离子质谱测量它们的细胞硫含量和合成代谢活性来证明。ANME-2a 的合成代谢活性明显高于 ANME-2c,这表明 ANME-2a 是观察到的 AQDS 耦合 AOM 对硫酸盐刺激的主要原因。比较转录组学显示,与硫酸盐耦合 AOM 相比,AQDS 耦合 AOM 时,与多个 ABC 转运体相关的 ANME-2a 转录物显著上调,而中心碳代谢下调。令人惊讶的是,AQDS 耦合 AOM 期间,有无硫酸盐添加,参与硫合成代谢的基因表达没有差异。总的来说,这些数据表明 ANME-2 古菌不能呼吸硫酸盐,但硫酸盐的可用性会不同程度地刺激不同 ANME 谱系的生长和 AOM 活性。

相似文献

引用本文的文献

本文引用的文献

5
Structure and mechanism of bacterial tripartite efflux pumps.细菌三联外排泵的结构与机制
Res Microbiol. 2018 Sep-Oct;169(7-8):401-413. doi: 10.1016/j.resmic.2018.05.003. Epub 2018 May 19.
6
Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily.MacB ABC 转运蛋白超家族的结构与力学转导机制。
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12572-12577. doi: 10.1073/pnas.1712153114. Epub 2017 Nov 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验