Program of Artificial Intelligence in Medicine, College of Medicine, Soochow University, Suzhou 215123, China.
Department of Internal Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
Comput Math Methods Med. 2021 Jul 5;2021:7252280. doi: 10.1155/2021/7252280. eCollection 2021.
Accurate risk assessment of high-risk patients is essential in clinical practice. However, there is no practical method to predict or monitor the prognosis of patients with ST-segment elevation myocardial infarction (STEMI) complicated by hyperuricemia. We aimed to evaluate the performance of different machine learning models for the prediction of 1-year mortality in STEMI patients with hyperuricemia. We compared five machine learning models (logistic regression, -nearest neighbor, CatBoost, random forest, and XGBoost) with the traditional global (GRACE) risk score for acute coronary event registrations. We registered patients aged >18 years diagnosed with STEMI and hyperuricemia at the Affiliated Hospital of Zunyi Medical University between January 2016 and January 2020. Overall, 656 patients were enrolled (average age, 62.5 ± 13.6 years; 83.6%, male). All patients underwent emergency percutaneous coronary intervention. We evaluated the performance of five machine learning classifiers and the GRACE risk model in predicting 1-year mortality. The area under the curve (AUC) of the six models, including the GRACE risk model, ranged from 0.75 to 0.88. Among all the models, CatBoost had the highest predictive accuracy (0.89), AUC (0.87), precision (0.84), and F1 value (0.44). After hybrid sampling technique optimization, CatBoost had the highest accuracy (0.96), AUC (0.99), precision (0.95), and F1 value (0.97). Machine learning algorithms, especially the CatBoost model, can accurately predict the mortality associated with STEMI complicated by hyperuricemia after a 1-year follow-up.
准确评估高危患者的风险对于临床实践至关重要。然而,目前尚无实用方法来预测或监测伴有高尿酸血症的 ST 段抬高型心肌梗死(STEMI)患者的预后。我们旨在评估不同机器学习模型在预测伴有高尿酸血症的 STEMI 患者 1 年死亡率方面的表现。我们比较了 5 种机器学习模型(逻辑回归、-近邻、CatBoost、随机森林和 XGBoost)与传统的急性冠脉事件注册全球风险评分(GRACE)在预测 STEMI 伴高尿酸血症患者 1 年死亡率方面的表现。我们登记了 2016 年 1 月至 2020 年 1 月在遵义医科大学附属医院诊断为 STEMI 和高尿酸血症的年龄>18 岁的患者。共有 656 例患者入组(平均年龄 62.5±13.6 岁,83.6%为男性)。所有患者均接受了急诊经皮冠状动脉介入治疗。我们评估了 5 种机器学习分类器和 GRACE 风险模型预测 1 年死亡率的性能。包括 GRACE 风险模型在内的 6 种模型的曲线下面积(AUC)范围为 0.75 至 0.88。在所有模型中,CatBoost 的预测准确性(0.89)、AUC(0.87)、精度(0.84)和 F1 值(0.44)最高。经过混合采样技术优化后,CatBoost 的准确性(0.96)、AUC(0.99)、精度(0.95)和 F1 值(0.97)最高。机器学习算法,尤其是 CatBoost 模型,在经过 1 年随访后,能够准确预测伴有高尿酸血症的 STEMI 患者的死亡率。