Mukherjee Ishita, Chakrabarti Saikat
Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal 700032, India.
Comput Struct Biotechnol J. 2021 Jun 24;19:3779-3795. doi: 10.1016/j.csbj.2021.06.039. eCollection 2021.
Proteins involved in interactions throughout the course of evolution tend to co-evolve and compensatory changes may occur in interacting proteins to maintain or refine such interactions. However, certain residue pair alterations may prove to be detrimental for functional interactions. Hence, determining co-evolutionary pairings that could be structurally or functionally relevant for maintaining the conservation of an inter-protein interaction is important. Inter-protein co-evolution analysis in several complexes utilizing multiple existing methodologies suggested that co-evolutionary pairings can occur in spatially proximal and distant regions in inter-protein interactions. Subsequently, the Co-Var (rrelated iation) method based on mutual information and Bhattacharyya coefficient was developed, validated, and found to perform relatively better than CAPS and EV-complex. Interestingly, while applying the Co-Var measure and EV-complex program on a set of protein-protein interaction complexes, co-evolutionary pairings were obtained in interface and non-interface regions in protein complexes. The Co-Var approach involves determining high degree co-evolutionary pairings that include multiple co-evolutionary connections between particular co-evolved residue positions in one protein with multiple residue positions in the binding partner. Detailed analyses of high degree co-evolutionary pairings in protein-protein complexes involved in cancer metastasis suggested that most of the residue positions forming such co-evolutionary connections mainly occurred within functional domains of constituent proteins and substitution mutations were also common among these positions. The physiological relevance of these predictions suggested that Co-Var can predict residues that could be crucial for preserving functional protein-protein interactions. Finally, web server (http://www.hpppi.iicb.res.in/ishi/covar/index.html) that implements this methodology identifies co-evolutionary pairings in intra and inter-protein interactions.
在整个进化过程中参与相互作用的蛋白质倾向于共同进化,并且相互作用的蛋白质中可能会发生补偿性变化以维持或优化这种相互作用。然而,某些残基对的改变可能对功能相互作用有害。因此,确定可能在结构或功能上与维持蛋白质间相互作用的保守性相关的共同进化配对很重要。利用多种现有方法对几种复合物进行的蛋白质间共同进化分析表明,共同进化配对可发生在蛋白质间相互作用的空间近端和远端区域。随后,基于互信息和 Bhattacharyya 系数的 Co-Var(相关变异)方法被开发、验证,并发现其性能相对优于 CAPS 和 EV-complex。有趣的是,在一组蛋白质-蛋白质相互作用复合物上应用 Co-Var 度量和 EV-complex 程序时,在蛋白质复合物的界面和非界面区域都获得了共同进化配对。Co-Var 方法涉及确定高度共同进化的配对,这些配对包括一个蛋白质中特定共同进化残基位置与结合伴侣中多个残基位置之间的多个共同进化连接。对参与癌症转移的蛋白质-蛋白质复合物中高度共同进化配对的详细分析表明,形成这种共同进化连接的大多数残基位置主要发生在组成蛋白质的功能域内,并且这些位置之间的替代突变也很常见。这些预测的生理相关性表明 Co-Var 可以预测对于维持功能性蛋白质-蛋白质相互作用至关重要的残基。最后,实现此方法的网络服务器(http://www.hpppi.iicb.res.in/ishi/covar/index.html)可识别蛋白质内和蛋白质间相互作用中的共同进化配对。